Skip to main content
Log in

Investigation of interface states between GaAs and Si3N4 after He+ implantation

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The cross-sectional morphology of GaAs/Si3N4/SiO2 composite wafer after He+ implantation has been systematically observed. Experiment sample is prepared by focused ion beam system to meet the observation requirements of transmission electron microscope. The results show that implantation of 300 keV, 5 × 1016/cm2 He+ gives rise to formation of bubbles and dislocations in GaAs material, but no cracks are observed. In addition, after annealing, interface separation and micro-gap appear at the interface between GaAs layer and Si3N4 layer. Finally, the mechanisms of bond fracture and blisters formation at the interface are explained by density function theory calculation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kim SH, Geum DM, Park MS et al (2017) Fabrication of high-quality GaAs-based photodetector arrays on Si. Appl Phys Lett 110:0–5

    Google Scholar 

  2. Shim JP, Kim SK, Kim H et al (2018) Double-gated ultra-thin-body GaAs-on-insulator p-FETs on Si. APL Mater 6:016103

    Article  Google Scholar 

  3. Dai P, Yang W, Long J et al (2019) The investigation of wafer-bonded multi-junction solar cell grown by MBE. J Cryst Growth 515:16–20

    Article  CAS  Google Scholar 

  4. Kim S, Geum DM, Park MS et al (2015) GaAs solar cell on Si substrate with good ohmic GaAs/Si interface by direct wafer bonding. Sol Energy Mater Sol Cells 141:372–376

    Article  CAS  Google Scholar 

  5. Predan F, Hohn O, Lackner D et al (2020) Development and analysis of wafer-bonded four-junction solar cells based on antimonides with 42% efficiency under concentration. IEEE J Photovolt 10:495–501

    Article  Google Scholar 

  6. Yi C, Ma F-J, Mizuno H et al (2020) Application of polydimethylsiloxane surface texturing on III–V//Si tandem achieving more than 2 % absolute efficiency improvement. Opt Express 28:3895

    Article  Google Scholar 

  7. Stanton EJ, Chiles J, Nader N et al (2020) Efficient second harmonic generation in nanophotonic GaAs-on-insulator waveguides. Opt Express 28:9521

    Article  Google Scholar 

  8. Kopperschmidt P, Senz S, Kästner G et al (1998) Materials integration of gallium arsenide and silicon by wafer bonding. Appl Phys Lett 72:3181–3183

    Article  CAS  Google Scholar 

  9. Radu I, Szafraniak I, Scholz R et al (2003) Low-temperature layer splitting of (100) GaAs by He+H coimplantation and direct wafer bonding. Appl Phys Lett 82:2413–2415

    Article  CAS  Google Scholar 

  10. Yeo CY, Xu DW, Yoon SF, Fitzgerald EA (2013) Low temperature direct wafer bonding of GaAs to Si via plasma activation. Appl Phys Lett 102:054107

    Article  Google Scholar 

  11. Yamajo S, Yoon S, Liang J et al (2019) Hard X-ray photoelectron spectroscopy investigation of annealing effects on buried oxide in GaAs/Si junctions by surface-activated bonding. Appl Surf Sci 473:627–632

    Article  CAS  Google Scholar 

  12. Hayashi S, Bruno D, Sandhu R, Goorsky MS (2003) Wafer bonding for III–V on insulator structures. J Electron Mater 32:877–881

    Article  CAS  Google Scholar 

  13. Bruel M (1995) Silicon on insulator material technology. Electron Lett 31:1201–1202

    Article  CAS  Google Scholar 

  14. Liu C, Wang Z, Li M et al (2008) Effects of the oxide layer on cavity formation and He desorption in He implanted silicon. J Phys D Appl Phys 41:135108

    Article  Google Scholar 

  15. Reboh S, De Mattos AAD, Schaurich F et al (2011) The mechanisms of surface exfoliation in H and He implanted Si crystals. Scr Mater 65:1045–1048

    Article  CAS  Google Scholar 

  16. Giguère A, Desrosiers N, Terreault B (2005) Blistering of GaAs by low keV H, D, and He ions. Appl Phys Lett 87:1–3

    Article  Google Scholar 

  17. Shcherbachev K, Bailey MJ (2011) Influence of implantation conditions of He+ ions on the structure of a damaged layer in GaAs(001). Phys Status Solidi Appl Mater Sci 208:2576–2581

    Article  CAS  Google Scholar 

  18. Ziegler JF, Biersack JP (1985) The stopping and range of ions in solids. Ion implantation techniques. Springer, Berlin, pp 122–156

    Google Scholar 

  19. Konobeyev AY, Fischer U, Korovin YA, Simakov SP (2017) Evaluation of effective threshold displacement energies and other data required for the calculation of advanced atomic displacement cross-sections. Nucl Energy Technol 3:169–175

    Article  Google Scholar 

  20. Xiao HY, Gao F, Zu XT, Weber WJ (2009) Threshold displacement energy in GaN: Ab initio molecular dynamics study. J Appl Phys 105:123527

    Article  Google Scholar 

  21. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  22. Christensen A, Carter EA (1998) First-principles study of the surfaces of zirconia. Phys Rev B 58:1–15

    Article  Google Scholar 

  23. Plößl A, Kräuter G (1999) Wafer direct bonding: tailoring adhesion between brittle materials. Mater Sci Eng R Rep 25:1–88

    Article  Google Scholar 

  24. Fuller KNG, Tabor D (1975) The effect of surface roughness on the adhesion of elastic solids. Proc R Soc Lond A Math Phys Sci 345:327–342

    Google Scholar 

  25. Zinkle SJ, Matsukawa Y (2004) Observation and analysis of defect cluster production and interactions with dislocations. J Nucl Mater 329–333:88–96

    Article  Google Scholar 

  26. Fu EG, Misra A, Wang H et al (2010) Interface enabled defects reduction in helium ion irradiated Cu/V nanolayers. J Nucl Mater 407:178–188

    Article  CAS  Google Scholar 

  27. Xie H, Gao N, Xu K et al (2017) A new loop-punching mechanism for helium bubble growth in tungsten. Acta Mater 141:10–17

    Article  CAS  Google Scholar 

  28. Pizani PS, Lanciotti F, Jasinevicius RG et al (2000) Raman characterization of structural disorder and residual strains in micromachined GaAs. J Appl Phys 87:1280–1283

    Article  CAS  Google Scholar 

  29. Taylor A, Boyd RJ (2008) Characterization of the bond between hydrogen and the non-nuclear attractor in anionic water clusters. Phys Chem Chem Phys 10:6814–6819

    Article  CAS  Google Scholar 

  30. Wu X, Luo T (2014) The importance of anharmonicity in thermal transport across solid-solid interfaces. J Appl Phys 115:014901

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Nature Science Foundation of China (Grant Nos. 61505003, 61674140) and the Beijing education commission project (SQKM201610005008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyong Wang.

Ethics declarations

Conflict of interest

The author has no conflict of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, R., Li, C., Lan, T. et al. Investigation of interface states between GaAs and Si3N4 after He+ implantation. J Radioanal Nucl Chem 327, 905–911 (2021). https://doi.org/10.1007/s10967-020-07564-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07564-0

Keywords

Navigation