Skip to main content
Log in

Recovery and transport of thorium(IV) through polymer inclusion membrane with D2EHPA from nitric acid solutions

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Recovery and transport of thorium(IV) from HNO3 medium using a polymer inclusion membrane (PIM) containing di (2-ethylhexyl) phosphoric acid (D2EHPA) as the carrier, and polyvinyl chloride (PVC) as polymer were studied. Taguchi L-16 orthogonal array was used to evaluate the effects of the membrane’s carrier content, pH, strip phase type and concentration, and initial concentration of Th(IV) on the cation transport. Using a 45% (m/m) D2EHPA-55% (m/m) PVC PIM, Th(IV) is completely separated from a number of common metal cations. Studies on the transport kinetics and the stability of the membranes were also performed. The results showed that the PIM has excellent stability.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zahakifar F, Charkhi A, Torab-Mostaedi M, Davarkhah R (2017) Study of uranium recovery from sulfate medium utilizing bulk liquid membrane containing Alamine 336 in kerosene. Nucl Sci Technol 15:18–28

    Google Scholar 

  2. Zahakifar F, Davarkhah R, Charkhi A, Torab-Mostaedi M (2017) Solvent extraction of uranium (VI) from leach liquor solution of Bandar Abbas Gachin ore using Alamine 336. Nucl Sci Technol 40:117–127

    Google Scholar 

  3. Drysdale JA, Buesseler KO (2020) Uranium adsorption behaviour of amidoximated fibers under coastal ocean conditions. Prog Nucl Energy 119:103170

    CAS  Google Scholar 

  4. Zahakifar F, Alamdar Milani S, Charkhi A (2018) Continuous bulk liquid membrane technique for thorium transport: modeling and experimental validation. J Iran Chem Soc. https://doi.org/10.1007/s13738-018-1516-7

    Article  Google Scholar 

  5. Vijayan P, Shivakumar V, Basu S, Sinha R (2017) Role of thorium in the Indian nuclear power programme. Prog Nucl Energy 101:43–52

    CAS  Google Scholar 

  6. György H, Czifrus S (2016) The utilization of thorium in Generation IV reactors. Prog Nucl Energy 93:306–317

    Google Scholar 

  7. Allahyari SA, Ahmadi SJ, Minuchehr A, Charkhi A (2017) Th (IV) recovery from aqueous waste via hollow fiber renewal liquid membrane (HFRLM) in recycling mode: modelling and experimental validation. RSC Adv 7(12):7413–7423

    CAS  Google Scholar 

  8. Yavari R, Asadollahi N, Mohsen MA (2017) Preparation, characterization and evaluation of a hybrid material based on multiwall carbon nanotubes and titanium dioxide for the removal of thorium from aqueous solution. Prog Nucl Energy 100:183–191

    CAS  Google Scholar 

  9. Kyzas GZ, Bomis G, Kosheleva RI, Efthimiadou EK, Favvas EP, Kostoglou M, Mitropoulos AC (2019) Nanobubbles effect on heavy metal ions adsorption by activated carbon. Chem Eng J 356:91–97

    CAS  Google Scholar 

  10. Yang X, Wan Y, Zheng Y, He F, Yu Z, Huang J, Wang H, Ok YS, Jiang Y, Gao B (2019) Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: a critical review. Chem Eng J 366:608–621

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Zahakifar F, Keshtkar A, Nazemi E, Zaheri A (2017) Optimization of operational conditions in continuous electrodeionization method for maximizing Strontium and Cesium removal from aqueous solutions using artificial neural network. Radiochim Acta 105:583–591

    CAS  Google Scholar 

  12. Yadollahi A, Saberyan K, Torab-Mostaedi M, Charkhi A, Pourjavid MR (2018) Solvent extraction separation of zirconium and hafnium from nitric acid solutions using mixture of Cyanex-272 and TBP. Radiochim Acta 106:675–684

    CAS  Google Scholar 

  13. Khanramaki F, Safdari J, Shirani AS, Torkaman R (2018) Investigations on the complete removal of iron (III) interference on the uranium (VI) extraction from sulfate leach liquor using Alamine 336 in kerosene. Radiochim Acta 106:631–643

    CAS  Google Scholar 

  14. Khanramaki F, Shirani A, Safdari J, Torkaman R (2017) Investigation of liquid extraction and thermodynamic studies on uranium from sulfate solution by Alamine 336 as an extractant. Int J Environ Sci Technol 15(7):1467–1476

    Google Scholar 

  15. Khanramaki F, Shirani AS, Safdari J, Torkaman R (2017) Equilibrium and kinetic of uranium (VI) extraction from a sulfate leach liquor solution by Alamine 336 using single drop technique. Chem Eng Res Des 125:181–189

    CAS  Google Scholar 

  16. Musikas C, Schulz WW, Liljenzin J-O (2004) Solvent extraction in nuclear science and technology. In: Rydberg J et al (eds) Solvent extraction principles and practice, revised and expanded. CRC Press, Boca Raton, pp 516–560

    Google Scholar 

  17. Yadollahi A, Torab-Mostaedi M, Saberyan K, Charkhi A, Zahakifar F (2019) Intensification of zirconium and hafnium separation through the hollow fiber renewal liquid membrane technique using synergistic mixture of TBP and Cyanex-272 as extractant. Chin J Chem Eng 27:1817–1827

    CAS  Google Scholar 

  18. Allahyari SA, Minuchehr A, Ahmadi SJ, Charkhi A (2017) Thorium pertraction through hollow fiber renewal liquid membrane (HFRLM) using Cyanex 272 as carrier. Prog Nucl Energy 100:209–220

    CAS  Google Scholar 

  19. Danesi PR, Reichley-Yinger L (1986) A composite supported liquid membrane for ultraclean Co–Ni separations. J Membr Sci 27(3):339–347

    CAS  Google Scholar 

  20. Bloch R (1970) Membrane science and technology. Plenum Press, New York, p 171

    Google Scholar 

  21. Cussler E, Evans D (1974) How to design liquid membrane separations. Sep Purif Methods 3(2):399–421

    CAS  Google Scholar 

  22. Cussler EL (2013) Multicomponent diffusion. Elsevier, Amsterdam

    Google Scholar 

  23. Lonsdale H (1982) The growth of membrane technology. J Membr Sci 10(2–3):81–181

    CAS  Google Scholar 

  24. Marr R, Kopp A (1982) Liquid membrane technology—a survey of phenomena, mechanisms and models. Int Chem Eng 22(1):44–60

    Google Scholar 

  25. Way JD, Noble RD, Flynn TM, Sloan ED (1982) Liquid membrane transport: a survey. J Membr Sci 12(2):239–259

    CAS  Google Scholar 

  26. Baker R, Tuttle M, Kelly D, Lonsdale H (1977) Coupled transport membranes: I. Copper separations. J Membr Sci 2:213–233

    CAS  Google Scholar 

  27. Babcock W, Baker R, Lachapelle E, Smith K (1980) Coupled transport membranes II: the mechanism of uranium transport with a tertiary amine. J Membr Sci 7(1):71–87

    CAS  Google Scholar 

  28. Babcock W, Baker R, Lachapelle E, Smith K (1980) Coupled transport membranes III: the rate-limiting step in uranium transport with a tertiary amine. J Membr Sci 7(1):89–100

    CAS  Google Scholar 

  29. Loiacono O, Drioli E, Molinari R (1986) Metal ion separation and concentration with supported liquid membranes. J Membr Sci 28(2):123–138

    CAS  Google Scholar 

  30. Kemperman AJ, Bargeman D, Van Den Boomgaard T, Strathmann H (1996) Stability of supported liquid membranes: state of the art. Sep Sci Technol 31(20):2733–2762

    CAS  Google Scholar 

  31. Neplenbroek A, Bargeman D, Smolders C (1992) Mechanism of supported liquid membrane degradation: emulsion formation. J Membr Sci 67(2–3):133–148

    CAS  Google Scholar 

  32. Danesi P, Reishley-Yinger L, Rickert P (1987) Life-time of SLM: the influence of interfacial properties, chemical composition and water transport on the long term of stability of the membranes. J Membr Sci 31:117–145

    CAS  Google Scholar 

  33. Takigawa DY (1992) The effect of porous support composition and operating parameters on the performance of supported liquid membranes. Sep Sci Technol 27(3):325–339

    CAS  Google Scholar 

  34. Gherrou A, Kerdjoudj H, Molinari R, Drioli E (2002) Facilitated co-transport of Ag (I), Cu (II), and Zn (II) ions by using a crown ether as carrier: influence of the SLM preparation method on ions flux. Sep Sci Technol 37(10):2317–2336

    CAS  Google Scholar 

  35. Neplenbroek A, Bargeman D, Smolders C (1992) Supported liquid membranes: instability effects. J Membr Sci 67(2–3):121–132

    CAS  Google Scholar 

  36. Sugiura M (1981) Coupled-ion transport through a solvent polymeric membrane. J Colloid Interface Sci 81(2):385–389

    CAS  Google Scholar 

  37. Almeida MIG, Cattrall RW, Kolev SD (2012) Recent trends in extraction and transport of metal ions using polymer inclusion membranes (PIMs). J Membr Sci 415:9–23

    Google Scholar 

  38. Pospiech B (2015) Studies on extraction and permeation of cadmium (II) using Cyphos IL 104 as selective extractant and ion carrier. Hydrometallurgy 154:88–94

    CAS  Google Scholar 

  39. Hayashita T, Kumazawa M, Yamamoto M (1996) Selective permeation of cadmium (II) chloride complex through cellulose triacetate plasticizer membrane containing trioctylmethylammonium chloride carrier. Chem Lett 25(1):37–38

    Google Scholar 

  40. Nazarenko AY, Lamb JD (1997) Selective transport of lead (II) and strontium (II) through a crown ether-based polymer inclusion membrane containing dialkylnaphthalenesulfonic acid. J Incl Phenom Mol Recognit Chem 29(3–4):247–258

    CAS  Google Scholar 

  41. Munro T, Smith B (1997) Facilitated transport of amino acids by fixed-site jumping. Chem Commun 22:2167–2168

    Google Scholar 

  42. St John AM, Cattrall RW, Kolev SD (2012) Transport and separation of uranium (VI) by a polymer inclusion membrane based on di-(2-ethylhexyl) phosphoric acid. J Membr Sci 409:242–250

    Google Scholar 

  43. Zaheri P, Ghassabzadeh H (2017) Preparation of polymer inclusion membrane including mixture of D2EHPA and Cyanex272 for the extraction of Eu from nitrate media. Chem Pap 71(9):1623–1631

    CAS  Google Scholar 

  44. Nghiem LD, Mornane P, Potter ID, Perera JM, Cattrall RW, Kolev SD (2006) Extraction and transport of metal ions and small organic compounds using polymer inclusion membranes (PIMs). J Membr Sci 281(1–2):7–41

    CAS  Google Scholar 

  45. O’Rourke M, Cattrall RW, Kolev SD, Potter ID (2009) The extraction and transport of organic molecules using polymer inclusion membranes. Solvent Extr Res Dev 16:1–12

    Google Scholar 

  46. Ashengroph M, Nahvi I, Amini J (2013) Application of Taguchi design and response surface methodology for improving conversion of isoeugenol into vanillin by resting cells of Psychrobacter sp. CSW4. Iran J Pharm Res IJPR 12(3):411

    CAS  PubMed  Google Scholar 

  47. Nasab ME, Sam A, Milani SA (2011) Determination of optimum process conditions for the separation of thorium and rare earth elements by solvent extraction. Hydrometallurgy 106(3–4):141–147

    CAS  Google Scholar 

  48. Taghizadeh M, Ghasemzadeh R, Ashrafizadeh S, Saberyan K, Maragheh MG (2008) Determination of optimum process conditions for the extraction and separation of zirconium and hafnium by solvent extraction. Hydrometallurgy 90(2–4):115–120

    CAS  Google Scholar 

  49. Sato T (1967) The extraction of thorium from nitric acid solutions by di (2-ethylhexyl)-phosphoric acid. J Inorg Nucl Chem 29(2):555–563

    CAS  Google Scholar 

  50. Nanda D, Oak M, Maiti B, Chauhan H, Dutta P (2002) Selective and uphill transport of uranyl ion in the presence of some base metals and thorium across bulk liquid membrane by di (2-ethylhexyl) phosphoric acid. Sep Sci Technol 37(14):3357–3367

    CAS  Google Scholar 

  51. Nanda D, Oak M, Kumar MP, Maiti B, Dutta P (2001) Facilitated transport of Th (IV) across bulk liquid membrane by di (2-ethylhexyl) phosphoric acid. Sep Sci Technol 36(11):2489–2497

    CAS  Google Scholar 

  52. Svendsen H, Schei G, Osman M (1990) Kinetics of extraction of zinc by di (2-ethylhexyl) phosphoric acid in cumene. Hydrometallurgy 25(2):197–212

    CAS  Google Scholar 

  53. Tulasi G, Kumar S (1999) Amino-acid extraction using D2EHPA: new description of equilibrium behavior. AIChE J 45(12):2534–2540

    CAS  Google Scholar 

  54. Hano T, Matsumoto M, Ohtake T, Egashir N, Hori F (1992) Recovery of lithium from geothermal water by solvent extraction technique. Solvent Extr Ion Exch 10(2):195–206

    CAS  Google Scholar 

  55. Zhang P, Yokoyama T, Itabashi O, Suzuki TM, Inoue K (1998) Hydrometallurgical process for recovery of metal values from spent lithium-ion secondary batteries. Hydrometallurgy 47(2–3):259–271

    CAS  Google Scholar 

  56. Sakai Y, Kadota K, Hayashita T, Cattrall RW, Kolev SD (2010) The effect of the counter anion on the transport of thiourea in a PVC-based polymer inclusion membrane using Capriquat as carrier. J Membr Sci 346(2):250–255

    CAS  Google Scholar 

  57. Aguilar J, Sanchez-Castellanos M, de San Miguel ER, De Gyves J (2001) Cd (II) and Pb (II) extraction and transport modeling in SLM and PIM systems using Kelex 100 as carrier. J Membr Sci 190(1):107–118

    CAS  Google Scholar 

  58. Kolev SD, Baba Y, Cattrall RW, Tasaki T, Pereira N, Perera JM, Stevens GW (2009) Solid phase extraction of zinc (II) using a PVC-based polymer inclusion membrane with di (2-ethylhexyl) phosphoric acid (D2EHPA) as the carrier. Talanta 78(3):795–799

    CAS  PubMed  Google Scholar 

  59. Argiropoulos G, Cattrall RW, Hamilton IC, Kolev SD, Paimin R (1998) The study of a membrane for extracting gold (III) from hydrochloric acid solutions. J Membr Sci 138(2):279–285

    CAS  Google Scholar 

  60. Unal R, Dean EB (1991) Taguchi approach to design optimization for quality and cost: an overview

  61. Yaftian MR, Zamani A, Rostamnia S (2006) Thorium (IV) ion-selective transport through a bulk liquid membrane containing 2-thenoyltrifluoroacetone as extractant-carrier. Sep Purif Technol 49(1):71–75

    CAS  Google Scholar 

  62. Eskandari Nasab M, Milani S, Sam A (2011) Extractive separation of Th (IV), U (VI), Ti (IV), La (III) and Fe (III) from zarigan ore. J Radioanal Nucl Chem 288(3):677–683

    CAS  Google Scholar 

  63. Ahmad A, Alam S (2018) Grey based Taguchi method for optimization of TIG process parameter in improving tensile strength of S30430 stainless steel. In: IOP conference series materials science and engineering

  64. Wp Y, Tarng Y (1998) Design optimization of cutting parameters for turning operations based on the Taguchi method. J Mater Process Technol 84(1–3):122–129

    Google Scholar 

  65. Roy RK (2001) Design of experiments using the Taguchi approach: 16 steps to product and process improvement. Wiley, New York

    Google Scholar 

  66. Abbas AA, Abdulkadhum HH (2019) Optimization of friction stir welding process parameters to joint 7075–T6 aluminium alloy by utilizing Taguchi technique. J Eng 25(5):1–15

    Google Scholar 

  67. Nghiem LD, Mornane P, Potter ID, Perera JM, Cattrall RW, Kolev SD (2006) Extraction and transport of metal ions and small organic compounds using polymer inclusion membranes (PIMs). J Membr Sci 281(1):7–41

    CAS  Google Scholar 

  68. Cussler E, Aris R, Bhown A (1989) On the limits of facilitated diffusion. J Membr Sci 43(2–3):149–164

    CAS  Google Scholar 

  69. Biswas S, Pathak P, Roy S (2012) Carrier facilitated transport of uranium across supported liquid membrane using dinonyl phenyl phosphoric acid and its mixture with neutral donors. Desalination 290:74–82

    CAS  Google Scholar 

  70. Tasaki T, Oshima T, Baba Y (2007) Extraction equilibrium and membrane transport of copper (II) with new N-6-(t-Dodecylamido)-2-pyridinecarboxylic acid in polymer inclusion membrane. Ind Eng Chem Res 46(17):5715–5722

    CAS  Google Scholar 

  71. Zahakifar F, Charkhi A, Torab-Mostaedi M, Davarkhah R, Yadollahi A (2018) Effect of surfactants on the performance of hollow fiber renewal liquid membrane (HFRLM): a case study of uranium transfer. J Radioanal Nucl Chem 318:1–11

    Google Scholar 

  72. Milkey RG (1953) Stability of metallic ions in dilute solution, vol 373. United States Department of the Interior, Geological Survey, New York

    Google Scholar 

  73. St John AM, Cattrall RW, Kolev SD (2010) Extraction of uranium (VI) from sulfate solutions using a polymer inclusion membrane containing di-(2-ethylhexyl) phosphoric acid. J Membr Sci 364(1–2):354–361

    CAS  Google Scholar 

  74. Sarangi K, Das R (2004) Separation of copper and zinc by supported liquid membrane using TOPS-99 as mobile carrier. Hydrometallurgy 71(3–4):335–342

    CAS  Google Scholar 

  75. Zebroski E, Alter H, Heumann F (1951) Thorium complexes with chloride, fluoride, nitrate, phosphate and sulfate1. J Am Chem Soc 73(12):5646–5650

    CAS  Google Scholar 

  76. Kebiche-Senhadji O, Mansouri L, Tingry S, Seta P, Benamor M (2008) Facilitated Cd (II) transport across CTA polymer inclusion membrane using anion (Aliquat 336) and cation (D2EHPA) metal carriers. J Membr Sci 310(1–2):438–445

    CAS  Google Scholar 

  77. Alguacil FJ, Alonso M (2005) Description of transport mechanism during the elimination of copper (II) from wastewaters using supported liquid membranes and Acorga M5640 as carrier. Environ Sci Technol 39(7):2389–2393

    CAS  PubMed  Google Scholar 

  78. Koekemoer LR, Badenhorst MJ, Everson RC (2005) Determination of viscosity and density of di-(2-ethylhexyl) phosphoric acid+ aliphatic kerosene. J Chem Eng Data 50(2):587–590

    CAS  Google Scholar 

  79. Kalachev A, Kardivarenko L, Plate N, Bagreev V (1992) Facilitated diffusion in immobilized liquid membranes: experimental verification of the “jumping” mechanism and percolation threshold in membrane transport. J Membr Sci 75(1–2):1–5

    CAS  Google Scholar 

  80. Yahaya G, Brisdon B, England R, Hamad E (2000) Analysis of carrier-mediated transport through supported liquid membranes using functionalized polyorganosiloxanes as integrated mobile/fixed-site carrier systems. J Membr Sci 172(1–2):253–268

    CAS  Google Scholar 

  81. Noble RD (1992) Generalized microscopic mechanism of facilitated transport in fixed site carrier membranes. J Membr Sci 75(1–2):121–129

    CAS  Google Scholar 

  82. Tor A, Arslan G, Muslu H, Celiktas A, Cengeloglu Y, Ersoz M (2009) Facilitated transport of Cr (III) through polymer inclusion membrane with di (2-ethylhexyl) phosphoric acid (DEHPA). J Membr Sci 329(1–2):169–174

    CAS  Google Scholar 

  83. Kavitha N, Palanivelu K (2012) Recovery of copper (II) through polymer inclusion membrane with di (2-ethylhexyl) phosphoric acid as carrier from e-waste. J Membr Sci 415:663–669

    Google Scholar 

  84. Saf AÖ, Alpaydin S, Coskun A, Ersoz M (2011) Selective transport and removal of Cr (VI) through polymer inclusion membrane containing 5-(4-phenoxyphenyl)-6H-1, 3, 4-thiadiazin-2-amine as a carrier. J Membr Sci 377(1–2):241–248

    CAS  Google Scholar 

  85. Rydberg J (2004) Solvent extraction principles and practice, revised and expanded. CRC Press, Boca Raton

    Google Scholar 

  86. Blake C, Baes C, Brown K (1958) Solvent extraction with alkyl phosphoric compounds. Ind Eng Chem 50(12):1763–1767

    CAS  Google Scholar 

  87. Gjelstad A, Pedersen-Bjergaard S (2013) Recent developments in electromembrane extraction. Anal Methods 5(18):4549–4557

    CAS  Google Scholar 

  88. Pedersen-Bjergaard S, Rasmussen KE (2006) Electrokinetic migration across artificial liquid membranes: new concept for rapid sample preparation of biological fluids. J Chromatogr A 1109(2):183–190

    CAS  PubMed  Google Scholar 

  89. Vera R, Gelde L, Anticó E, de Yuso MM, Benavente J, Fontàs C (2017) Tuning physicochemical, electrochemical and transport characteristics of polymer inclusion membrane by varying the counter-anion of the ionic liquid Aliquat 336. J Membr Sci 529:87–94

    CAS  Google Scholar 

  90. Scindia Y, Pandey A, Reddy A (2005) Coupled-diffusion transport of Cr (VI) across anion-exchange membranes prepared by physical and chemical immobilization methods. J Membr Sci 249(1–2):143–152

    CAS  Google Scholar 

  91. Schow AJ, Peterson RT, Lamb JD (1996) Polymer inclusion membranes containing macrocyclic carriers for use in cation separations. J Membr Sci 111(2):291–295

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Zahakifar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arabi, H.R., Milani, S.A., Abolghasemi, H. et al. Recovery and transport of thorium(IV) through polymer inclusion membrane with D2EHPA from nitric acid solutions. J Radioanal Nucl Chem 327, 653–665 (2021). https://doi.org/10.1007/s10967-020-07555-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07555-1

Keywords

Navigation