Skip to main content
Log in

Natural radium isotopes in waters determined with gamma-ray spectrometry using a HPGe detector

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

This paper describes a methodology developed to measure the activity concentration of the four natural radium isotopes 226Ra, 228Ra, 224Ra and 223Ra in water samples, using γ-ray analysis performed with a hyperpure germanium detector (HPGe). The detector efficiency was properly determined using a set of thorium standards exhibiting concentrations between 10 and 10,000 μg/g. The developed analytical protocol was applied for evaluating the radium activity concentration in groundwater samples providing from different aquifer systems in three Brazilian states. The results were compared with the guideline reference values for 226Ra and 228Ra as proposed by the Brazilian and WHO legislations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Langmuir D, Reise AC (1985) The thermodynamic properties of radium. Geochim Cosmochim Acta 49:1593–1601

    Article  CAS  Google Scholar 

  2. Pearce A (2008) Recommended nuclear decay data. NPL Report IR 6. National Physical Laboratory, Middlesex

  3. Godoy JM, Godoy ML (2006) Natural radioactivity in Brazilian groundwater. J Environ Radioact 85:71–83

    Article  CAS  Google Scholar 

  4. Rankama K (1954) Isotope geology. McGraw-Hill Book Co., Inc., New York

    Google Scholar 

  5. Rogers JJW, Adams JAS (1969) In: Wedepohl KH (ed) Handbook of Geochemistry, vol 4. Springer, New York

    Google Scholar 

  6. Mancini LH (2002) 226Ra and 228Ra migration in surface and groundwaters of Barreiro de Araxá alkaline complex (MG). PhD Thesis, UNESP-São Paulo State University, Rio Claro (in Portuguese)

  7. Desideri D, Roselli S, Feduzi L, Meli MA (2007) Radiological characterization of drinking waters in Central Italy. Microchem J 87:13–19

    Article  CAS  Google Scholar 

  8. WHO (World Health Organization) (2011) Guidelines for drinking water quality, 4th edn. WHO Press, Geneva

    Google Scholar 

  9. Bayes JC, Gomez E, Garcias F, Casas M, Cerda V (1996) Radium determination in mineral waters. Appl Radiat Isot 47(9/10):849–853

    Article  CAS  Google Scholar 

  10. MS (Health Ministry) (2011) Procedures for controlling and surveillance of the water quality for human consumption and its potability standard—Rule No. 2914. Brazilian Official Press, Brasília (in Portuguese)

    Google Scholar 

  11. Clayton CG (1983) Nuclear geophysics. Pergamon, Oxford

    Google Scholar 

  12. APHA, Awwa, WEF (2005) Standard methods for the examination of water and wastewater, 21st edn. American Public Health Association, American Water Works Association and Water Environment Federation, Washington

    Google Scholar 

  13. Chiu NW, Dean JR (1986) Radioanalytical methods manual. National Uranium Tailings Program, Canadian Centre for Mineral and Energy Technology, Canadian Government Publishing Centre (CANMET Report 78-22)

  14. Adams JAS, Gasparini P (1970) Gamma ray spectrometry of rocks. Elsevier, Amsterdam

    Google Scholar 

  15. Bonotto DM, Bueno TO, Tessari BW, Silva A (2009) The natural radioactivity in water by gross alpha and beta measurements. Radiat Meas 44:92–101

    Article  CAS  Google Scholar 

  16. Casagrande MFS, Bonotto DM (2018) The use of γ-rays analysis by HPGe detector to assess the gross alpha and beta activities in waters. Appl Radiat Isot 137:1–11

    Article  CAS  Google Scholar 

  17. Júnior JAS, Amaral RS, Silva CM, Menezes RSC, Bezerra JD (2009) Comparative studies between HPGe and NaI(Tl) detectors for determining 238U, 232Th and 40K in soil samples. Nuclear Energy Department (DEN), UFPE-Federal University of Pernambuco, Recife (in Portuguese)

    Google Scholar 

  18. ORTEC (2020) Laboratory Detector Module LDM-1. http://www.youngin.com/application/LDM-1.pdf. Accessed 31 Aug 2020

  19. Chu SYF, Ekström LP, Firestone RB (1999) The Lund/LBNL Nuclear Data Search. http://nucleardata.nuclear.lu.se/nucleardata/toi/index.asp. Accessed 31 Aug 2020

  20. Tzortzis M, Tsertos H, Christofides S, Christodoulides G (2003) Gamma-ray measurements of naturally occurring radioactive samples from Cyprus characteristic geological rocks. Radiat Meas 37:221–229

    Article  CAS  Google Scholar 

  21. Rodrigues JL, Kastner GF, Ferreira AV (2011) Determination of efficiency curves for HPGe detector in different counting geometries. In: Proceedings International Nuclear Atlantic Conference—INAC 2011. ABEN (Brazilian Association of Nuclear Energy), Belo Horizonte, pp 1–11 (in Portuguese)

  22. Zanardo A (1987) Petrographic and microstructural analysis of rocks from Águas de Lindóia Sheet. MS Dissertation, USP-São Paulo University, São Paulo

  23. Milani EJ, Melo JHG, Souza PA, Fernandes LA, França AB (2007) Paraná basin. Petrobras Geosci Bull 15(2):265–287 (in Portuguese)

    Google Scholar 

  24. Fernandes LA (2004) Lithostratigraphic map of the eastern part of Bauru basin (PR, SP and MG), scale 1:1.000.000. Paraná State Geosci Bull 55:53–66 (in Portuguese)

    Google Scholar 

  25. Soares PC (1972) Glacial-post glacial limit of Tubarão Group in São Paulo State. An Acad Bras Cienc 44:333–342

    Google Scholar 

  26. Iritani MA, Ezaki S (2012) Groundwaters in São Paulo State, 3rd edn. SMA (São Paulo State Environment Secretary), São Paulo

  27. Schneider RL, Muhlmann H, Tommasi E, Medeiros RA, Daemon RF, Nogueira AA (1974) Stratigraphic review of the Paraná basin. In: Proceedings XXVIII Brazilian Congress of Geology 1. SBG (Brazilian Society of Geology), Porto Alegre, 41-65 (in Portuguese)

  28. Thedeschi MF, Vieira PLNCR, Nomo TA (2015) Project borders of Minas Gerais: Caldas/Poços de Caldas Sheet, scale 1:100.000. UFMG-Federal University of Minas Gerais, Belo Horizonte, pp 1–78 (in Portuguese)

    Google Scholar 

  29. Schorscher JHD, Shea ME (1992) The regional geology of the Poços de Caldas alkaline complex: mineralogy and geochemistry of selected nepheline syenites and phonolites. J Geochem Explor 45:25–51

    Article  CAS  Google Scholar 

  30. Szikszay M (1981) Hydrogeochemistry of Águas da Prata springs, São Paulo State. Post PhD Thesis, USP-São Paulo University, São Paulo (in Portuguese)

  31. Hasui Y, Oliveira MAF (1984) In: Almeida FFM, Hasui Y (eds) Precambrian in Brazil, 1st edn. São Paulo, Edgard Blücher (in Portuguese)

    Google Scholar 

  32. Campos Neto MC (1991) The western portion of Alto do Rio Grande strip: tectonic evolution assay. MS Dissertation, USP-São Paulo University, São Paulo (in Portuguese)

  33. Beato DA, Oliveira FA, Viana HS (1999) Water circuit project of minas Gerais State. CPRM, Belo Horizonte, pp 1–142 (in Portuguese)

    Google Scholar 

  34. Trouw RAJ, Ribeiro A, Paciullo FVP (2003) In: Pedrosa Soares CA, Noce MA, Trouw RAJ, Heilbron M (eds) Geology of Caxambu Sheet scale 1:100.000, 1st edn. COMIG (Mining Company of Minas Gerais), Belo Horizonte, 120-152

  35. Campos HCNS (2000) Hydrogeological map of Guarani aquifer. Acta Geológica Leopoldensia 23(4):1–50 (in Portuguese)

    Google Scholar 

  36. Araújo LM, Franca AB, Potter PE (1999) Hydrogeology of the Mercosul aquifer system in the Paraná and Chaco-Parana Basins, South America, and comparison with the Navajo-Nugget aquifer system, USA. Hydrogeol J 7:317–336

    Article  Google Scholar 

  37. Cruz WB, Peixoto CAM (1989) Thermal waters from Poços de Caldas, MG: experimental study of water-rock interactions. Rev Bras Geocienc 19:76–86

    Article  Google Scholar 

  38. Bonotto DM (2006) Hydro(radio)chemical relationships in the giant Guarani aquifer. Brazil J Hydrol 323:353–386

    Article  Google Scholar 

  39. Bonotto DM (2012) A comparative study of aquifer systems occurring at the Paraná sedimentar basin, Brazil: major hydrochemical trends. Environ Earth Sci. https://doi.org/10.1007/s12665-012-1676-1

    Article  Google Scholar 

  40. Bonotto DM (2016) Hydrogeochemical study of spas groundwaters from southeast Brazil. J Geochem Explor 169:60–72

    Article  CAS  Google Scholar 

  41. Young HD (1962) Statistical treatment of experimental data. McGraw Hill, New York

    Google Scholar 

  42. Beers Y (1962) Introduction to the theory of error, 3rd edn. Addison-Wesley Publishing Company, Massachusetts

    Google Scholar 

  43. Currie LA (1968) Limits for qualitative detection and quantitative determination. Anal Chem 40:586–593

    Article  CAS  Google Scholar 

  44. Porcelli D, Swarzenski PW (2003) The behaviour of U- and Th-series nuclides in groundwater. Rev Miner Geochem 52:317–361

    Article  CAS  Google Scholar 

  45. Bonotto DM, Elliot T (2017) Trace elements, REEs and stable isotopes (B, Sr) in GAS groundwater, São Paulo State, Brazil. Environ Earth Sci 76:265

    Article  Google Scholar 

  46. Gonneea ME, Morris PJ, Dulaiova H, Charette MA (2008) New perspectives on radium behavior within a subterranean estuary. Mar Chem 109:250–267

    Article  CAS  Google Scholar 

  47. Bonotto DM (2015) 226Ra and 228Ra in mineral waters of southeast Brazil. Environ Earth Sci 74:839–853

    Article  CAS  Google Scholar 

  48. Carbajo JM, Maraver F (2017) Sulphurous mineral waters: new applications for health. Evid-based Complement Altern Med. https://doi.org/10.1155/2017/8034084

    Article  Google Scholar 

  49. Smith B, Amonette A (2006) The environmental transport of radium and plutonium: a review. Institute for Energy and Environmental Research, Takoma Park

    Google Scholar 

  50. Vinson D, Vengosh A, Hirschfeld D, Dwyer GS (2009) Relatonships between radium and radon occurrence and hydrochemistry in fresh groundwater from fractured crystalline rocks, North Carolina (USA). Chem Geol 260:159–171

    Article  CAS  Google Scholar 

  51. Turhan S, Zararsiz A, Yücel H (2006) Sample geometry and efficiency determination of bremsstrahlung radiation of 90Sr on gamma detection systems. J Radioanal Nucl Chem 269(1):141–145

    Article  CAS  Google Scholar 

  52. Quindós LS, Sainz C, Fuente I, Nicolás J, Quindós L, Arteche J (2006) Correction by self-attenuation in gamma-ray spectrometry for environmental samples. J Radioanal Nucl Chem 270(2):339–343

    Article  Google Scholar 

  53. Parker JL (1984) The use of calibration standards and correction for sample self-attenuation in gamma-ray nondestructive assay. Los Alamos National Laboratory Report LA-10045

  54. Ivanovich M, Harmon RS (1992) Uranium series disequilibrium: applications to earth, marine, and environmental sciences, 2nd edn. Clarendon Press, Oxford

    Google Scholar 

Download references

Acknowledgements

MLVP thanks CAPES (Coordination for the Improvement of Higher Education Personnel) in Brazil for the MS scholarship. UNESPetro (Geosciences Center Applied to Petroleum) is thanked for allowing access to the γ-ray spectrometer with HPGe detector. One anonymous reviewer is greatly thanked for helpful comments and suggestions that improved the readability of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel M. Bonotto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patricio, M.L.V., Bonotto, D.M. Natural radium isotopes in waters determined with gamma-ray spectrometry using a HPGe detector. J Radioanal Nucl Chem 327, 403–416 (2021). https://doi.org/10.1007/s10967-020-07517-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07517-7

Keywords

Navigation