Skip to main content

Study of the accelerator production of 169Yb radioisotope via various particles nuclear reactions


The production of brachytherapy radio-nuclide 169Yb was investigated in the 169Tm(p,n), 170Yb(p,2n), 171Yb(p,3n), 172Yb(p,4n), 169Tm(d,2n), 168Er(α,3n), 167Er(α,2n) and 166Er(α,n) reactions. The cross section of these reactions were calculated using TALYS 1.9 code and compared with the available experimental results. SRIM-2013 code and GEANT4 toolkit were used to calculate the stopping power, range and projectile flux within the target. The optimum target thickness, theoretical and simulation production yield of 169Yb radioisotope in each reaction were calculated. Finally, the 169Tm(p, n) reaction with high production yield was suggested to produce 169Yb radioisotope.

This is a preview of subscription content, access via your institution.

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12


  1. 1.

    Singh N (2011) Radioisotopes–applications in physical sciences. INTECH open access,

  2. 2.

    Foldiak G (1986) Industrial application of radioisotopes. North-Holland

  3. 3.

    Saxena SK, Kumar Y, Jagadeesan KC, Nuwad J, Bamanlar YR, Dash A (2015) Studies on the development of 169Yb-brachytherapy seeds: new generation brachytherapy sources for the management of cancer. Appl Radiat Isot 101:75–82

    CAS  Article  Google Scholar 

  4. 4.

    Reynoso FJ, Manohar N, Krishnan S, Choa SH (2014) Design of an Yb-169 source optimized for gold nanoparticle-aided radiation therapy. Med Phys 41:1017091–1017099

    Article  Google Scholar 

  5. 5.

    Firestone RB, Baglin CM, Chu FSY (1998) Table of Isotopes, vol 8. Wiley, New York (update on CD-ROM)

    Google Scholar 

  6. 6.

    Fisher B, Porter A, Barnett R, Mason D, Papiez EA (1993) First clinical application of a new brachytherapy source—Ytterbium-169. Endocurie-Therapy Hyperth Oncol 9:195–199

    Google Scholar 

  7. 7.

    Medich DC, Munro JJ III (2010) Dependence of Yb-169 absorbed dose energy correction factors on self-attenuation in source material and photon buildup in water. Med Phys 37:2135–2144

    CAS  Article  Google Scholar 

  8. 8.

    Medich DC, Tries MA, Munro JJ III (2006) Monte Carlo characterization of an ytterbium-169 high dose rate brachytherapy source with analysis of statistical uncertainty. Med Phys 33:163–172

    CAS  Article  Google Scholar 

  9. 9.

    Granero D, Calatayud JP, Ballester F, Bos AJJ, Venselaar JL (2005) Broad-beam transmission data for new brachytherapy sources, Tm-170 and Yb-169. Radiat Prot Dosim 118:11–15

    Article  Google Scholar 

  10. 10.

    Hermanne A, Tárkányi F, Takács S, Ditrói F, Baba M, Ohtshuki T, Spahn I, Ignatyuk AV (2009) Excitation functions for production of medically relevant radioisotopes in deuteron irradiations of Pr and Tm targets. Nucl Instrum Methods Phys Res B 267:727–736

    CAS  Article  Google Scholar 

  11. 11.

    Hermanne A, Tárkányi F, Takács S, Ditrói F (2016) Extension of excitation functions up to 50 MeV for activation products in deuteron irradiations of Pr and Tm targets. Nucl Instrum Methods Phys Res B 383:81–88

    CAS  Article  Google Scholar 

  12. 12.

    Tarkanyi F, Hermanne A, Takacs S, Ditroi F, Spahn I, Kovalev SF, Ignatyuk AV, Qaim SM (2007) Activation cross sections of the 169Tm(d,2n) reaction for production of the therapeutic radionuclide 169Yb. Appl Radiat Isot 65:663–668

    CAS  Article  Google Scholar 

  13. 13.

    Saito M, Aikawa M, Murata T, Komori Y, Haba H, Takacs S, Ditroi F, Szűc Z (2020) Production cross sections of 169Yb by the proton-induced reaction on 169Tm. Nucl Instrum Methods Phys Res B 471:13–16

    CAS  Article  Google Scholar 

  14. 14.

    Tarkanyi F, Hermanne A, Takacs S, Ditroi F, Spahn I, Ignatyuk AV (2012) Activation cross-sections of proton induced nuclear reactions on thulium in the 20–45 MeV energy range. Appl Radiat Isot 70:309–314

    CAS  Article  Google Scholar 

  15. 15.

    Sonnabend K, Glorius J, Gorres J, Knorzer M, Muller S, Sauerwein A, Tan WP, Wiescher M (2011) Activation experiments for p-process nucleosynthesis. J Phys Conf Ser 312:042007–042012

    Article  Google Scholar 

  16. 16.

    Spahn I, Takacs S, Shubin YN, Tarkanyi F, Coenen HH, Qaim SM (2005) Cross-section measurement of the 169Tm(p, n) reaction for the production of the therapeutic radionuclide 169-Yb and comparison with its reactor-based generation. Appl Radiat Isot 63:235–239

    CAS  Article  Google Scholar 

  17. 17.

    Saito M, Aikawa M, Sakaguchi M, Ukon N, Komori Y, Haba H (2019) Production cross sections of ytterbium and thulium radioisotopes in alpha induced nuclear reactions on natural erbium. Appl Radiat Isot 154:1–6

    Article  Google Scholar 

  18. 18.

    Kiraly B, Tarkanyi F, Takacs S, Hermanne A, Kovalev SF, Ignatyuk AV (2008) Excitation functions of alpha-induced nuclear reactions on natural erbium. Nucl Instrum Methods Phys Res B 266:549–554

    CAS  Article  Google Scholar 

  19. 19.

    Sadeghi M, Enferadi M (2011) Nuclear model calculations on the production of 119Sb via various nuclear reactions. Ann Nucl Energy 38:825–834

    CAS  Article  Google Scholar 

  20. 20.

    Sadeghi M, Zandi N, Bakhtiari M (2012) Nuclear model calculation for cyclotron production of 61Cu as a PET imaging. J Radioanal Nucl Chem 292:777–783

    CAS  Article  Google Scholar 

  21. 21.

    Sadeghi M, Enferadi M, Nadi H (2010) Study of the cyclotron production of 172Lu: an excellent radiotracer. J Radioanal Nucl Chem 286:259–263

    CAS  Article  Google Scholar 

  22. 22.

    Enferadi M, Sarbazvatan S, Sadeghi M, Hong JH, Tung CJ, Chao TC, Lee CC, Wey SP (2017) Nuclear reaction cross sections for proton therapy applications. J Radioanal Nucl Chem 314:1207–1235

    CAS  Article  Google Scholar 

  23. 23.

    Koning AJ, Rochman D (2012) Modern nuclear data evaluation with the TALYS code system. Nucl Data Sheets. 113:2841–2934.

  24. 24.

    Ziegler JF (2004) SRIM-2003.Nucl Instr Meth B. 219–220:1027–1036. (Available from: <>)

  25. 25.

    Geant4: A Simulation Toolkit (2015) Physics Reference Manual for Geant4. CERN

  26. 26.

    Kakavand T, Mirzaii M, Eslami M, Karimi A (2015) Experimental and Monte Carlo study on production of 110mIn via natCd (p, xn) reaction. J Radioanal Nucl Chem 306:423–427

    CAS  Article  Google Scholar 

  27. 27.

    Azizakram H, Sadeghi M, Ashtari P, Zolfagharpour F (2018) A Monte Carlo approach to calculate the production prerequisites of 124I radioisotope towards the activity estimation. Nucl Technol Radiat Prot 33:68–74

    CAS  Article  Google Scholar 

  28. 28.

    Koning AJ, Rochman D, Sublet JCh, Dzysiuk N, Fleming M, Marck SV (2019) TENDL: Complete nuclear data library for innovative nuclear science and technology. Nucl Data Sheets 155:1–55

    CAS  Article  Google Scholar 

  29. 29.

    Nadi H, Sadeghi M, Enferadi M, Sarabadani P (2011) Cyclotron production of 169Yb: a potential radiolanthanide for brachytherapy. J Radioanal Nucl Chem 289:361–365

    CAS  Article  Google Scholar 

Download references


The authors would like to thank Yazd University Research Council for their financial support.

Author information



Corresponding author

Correspondence to Mansoureh Tatari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tatari, M., Goudarzi, P. & Naik, H. Study of the accelerator production of 169Yb radioisotope via various particles nuclear reactions. J Radioanal Nucl Chem 327, 525–532 (2021).

Download citation


  • 169yb radio-nuclide
  • Charge particle induced reactions
  • Production yield
  • TALYS-1.9
  • SRIM-2013
  • GEANT4