Skip to main content
Log in

A proposal to design a new high volume standard air filter for efficiency calibration of HPGe detector

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A prototype of a standard high volume air filter was proposed and constructed by a novel method, which provides a symmetric distribution of radionuclides for accurate measurements of radioactivity in air samples. Then air samples were collected at an air flow rate of 300 m3 h−1 to 900 m3 h−1 samplers for 24 h per sample. The average concentrations of 7Be and 210Pb were measured as 3.80 ± 0.46 mBq m−3 and 0.92 ± 0.33 mBq m−3, respectively. The data can be used as a basis for related measurements in the atmospheric pollution research in Iran.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alkhomashi N, Almasoud FI (2016) Indication of the radioactive fallout in Riyadh, Saudi Arabia following the Fukushima nuclear accident. J Environ Radioact 152:70–74. https://doi.org/10.1016/j.jenvrad.2015.11.009

    Article  CAS  PubMed  Google Scholar 

  2. Alkhomashi N, Al-Hamarneh IF, Alkhorayef M, Sulieman A, Almsulm R, Alyousif A, Alsalamah AS, Alssalim YA, Alotibi W (2020) Measurements of surface air 7Be concentrations in Saudi Arabia. App Radiat Isot 165:109305. https://doi.org/10.1016/j.apradiso.2020.109305

    Article  CAS  Google Scholar 

  3. Cruz PTF, Bonga IAC, Sada CLD, Olivares JU, Cruz FMD, Palad LJH, Jesuitas AJ, Cabatbat EC, Omandam VJ, Garcia TY, Feliciano CP (2019) Assessment of temporal variations of natural radionuclides Beryllium-7 and Lead-212 in surface air in Tanay, Philippines. J Environ Radioact 105989:208–209. https://doi.org/10.1016/j.jenvrad.2019.105989

    Article  CAS  Google Scholar 

  4. Daza MJ, Quintana B, Garcia-Talavera M, Fernandez F (2001) Efficiency calibration of a HPGe detector in the [46.54–2000] keV energy range for the measurement of environmental samples. Nucl Instrum Methods Phys Res A 470:520–532. https://doi.org/10.1016/S0168-9002(01)00798-7

    Article  CAS  Google Scholar 

  5. Długosz-Lisiecka M, Bern H (2020) Seasonal fluctuation of activity size distribution of 7Be, 210Pb, and 210Poradionuclides in urban aerosols. J Aerosol Sci 144(2020):105544. https://doi.org/10.1016/j.jaerosci.2020.105544

    Article  CAS  Google Scholar 

  6. Gilmore GR (2008) Practical gamma-ray spectrometry. Wiley, New Jersey

    Book  Google Scholar 

  7. L'Annunziata MF (2012). Handbook of radioactivity analysis. 3rd ed, ISBN 978–0–12–384873–4

  8. Leppänen A-P, Usoskin IG, Kovaltsov GA, Paatero J (2012) Cosmogenic 7Be and 22Na inFinland: production, observed periodicities and the connection to climatic phenomena. J Atmos Solar Terr Phys 74:164–180. https://doi.org/10.1016/j.jastp.2011.10.017

    Article  CAS  Google Scholar 

  9. Leppänen A-P, Mattila A, Kettunen M, Kontro R (2013) Artificial radionuclides in surface air in Finland following the Fukushima Dai-ichi nuclear power plant accident. J Environ Radioact 126:273–283. https://doi.org/10.1016/j.jenvrad.2013.08.008

    Article  CAS  PubMed  Google Scholar 

  10. Nakashima N, Duran EB (2018) Proficiency test exercises for particulate systems at CTBT radionuclide laboratories. Appl Radiat Isot 134:35–39. https://doi.org/10.1016/j.apradiso.2017.07.034

    Article  CAS  PubMed  Google Scholar 

  11. Rulık P, Mala H, Beckova V, Holgye Z, Schlesingerova E, Svetlık I, Skrkal J (2009) Low level air radioactivity measurements in Prague, Czech Republic. App Radiat Isot 67:969–973. https://doi.org/10.1016/j.apradiso.2009.01.067

    Article  CAS  Google Scholar 

  12. senya.fi/snowwhite.php

  13. UNSCEAR (2000) United nations scientific committee on the effects of atomic radiation. Sources and Effects of Ionizing Radiation, New York, p 1

    Google Scholar 

  14. Visetpotjanakit S, Kaewpaluek S, Udomsomporn S (2016) Participation in IAEA-TEL-201304/28ALMERAProficiency test exercise on determination of anthropogenic radionuclides in water and flour samples. Appl Radiat Isot 109:78–81. https://doi.org/10.1016/j.apradiso.2015.11.045

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asghar Hadadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

$$\epsilon \left( \% \right) = \frac{NetArea}{{t \times Activity\left( {Bq} \right) \times P}}$$
(A.1)
$$\epsilon \left( \% \right) = (a + c \times \ln E + e \times \left( {\ln E} \right)\left( {\ln E} \right)^{2}) /\left( {1 + b \times \ln E + d \times \left( {\ln E} \right)^{2} } \right)$$
(A.2)
$$\epsilon \left( \% \right) = \frac{{\left( {a + cE + eE^{2} } \right)}}{{\left( {1 + bE + dE^{2} } \right)}}$$
(A.3)
$$MDA \left( {Bq} \right) = \frac{2.71 + (4.65 \times \sqrt {b}) }{t \times \epsilon \times P}$$
(A.4)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tourang, M., Hadadi, A., Athari Allaf, M. et al. A proposal to design a new high volume standard air filter for efficiency calibration of HPGe detector. J Radioanal Nucl Chem 327, 345–352 (2021). https://doi.org/10.1007/s10967-020-07499-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07499-6

Keywords

Navigation