Skip to main content
Log in

Removal of U(VI) from aqueous solution using AO-artificial zeolite

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Amidoxime (AO) based adsorbents have been proposed as low cost and efficient adsorbent for U(VI). Herein, we present a simple strategy for preparing AO modified artificial zeolite. The composition and morphology of the materials have been confirmed via XRD, FT-IR, TGA and SEM. The AO-artificial zeolite was synthesised as an efficient adsorbent for adsorbing U(VI). The critical factors affecting U(VI) adsorption from aqueous solution were exploited, such as pH, contact time, temperature and adsorbent dosage. This study reveals AO-artificial zeolite, along with a low-cost, environmentally friendly and facile synthesis, can be regarded as a promising material for uranium-containing wastewater treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lv Z, Wang H, Chen C, Yang S, Chen L, Alsaedi A, Hayat T (2019) Enhanced removal of uranium(VI) from aqueous solution by a novel Mg–MOF-74-derived porous \({\text{MgO}}\)/carbon adsorbent. J Colloid Interface Sci 537:1–10

    Google Scholar 

  2. Su S, Liu Q, Liu J, Zhang H, Li R, Jing X, Wang J (2018) Polyethyleneimine-functionalized Luffa cylindrica for efficient uranium extraction. J Colloid Interface Sci 530:538–546

    CAS  PubMed  Google Scholar 

  3. Duan S, Xu X, Liu X, Wang Y, Hayat T, Alsaedi A, Meng Y, Li J (2018) Highly enhanced adsorption performance of U(VI) by non-thermal plasma modified magnetic \({\text{ Fe}}_{3}{{\rm O}}_{{4}}\) nanoparticles. J Colloid Interface Sci 513:92–103

    CAS  PubMed  Google Scholar 

  4. Duan S, Liu X, Wang Y, Shao D, Alharbi NS, Alsaedi A, Li J (2016) Highly efficient entrapment of U(VI) by using porous magnetic \({\text{Ni}}_{0.6}{\hbox{Fe}}_{2.4}{\rm{O}}_{4}\) micro-particles as the adsorbent. J Taiwan Inst Chem Eng 65:367–377

    CAS  Google Scholar 

  5. Lapka JL, Paulenova A, Alyapyshev MY, Babain VA, Herbst RS, Law JD (2009) Extraction of uranium(VI) with diamides of dipicolinic acid from nitric acid solutions. Radiochimica Acta 97(6):291–296

    CAS  Google Scholar 

  6. Tsaoulidis D, Ortega EG, Angeli P (2018) Intensified extraction of uranium(VI) in impinging-jets contactors. Chem Eng J 342:251–259

    CAS  Google Scholar 

  7. Pidchenko I, Kvashnina KO, Yokosawa T, Finck N, Bahl S, Schild D, Polly R, Bohnert E, Rossberg A, Gottlicher J et al (2017) Uranium redox transformations after U(VI) coprecipitation with magnetite nanoparticles. Environ Sci Technol 51(4):2217–2225

    CAS  PubMed  Google Scholar 

  8. Rezaee M, Khalilian F (2015) Determination of uranium in water samples using homogeneous liquid–liquid microextraction via flotation assistance and inductively coupled plasma-optical emission spectrometry. J Radioanal Nuclear Chem 304(3):1193–1200

    CAS  Google Scholar 

  9. Gao MW, Zhu GR, Wang XH, Wang P, Gao CJ (2015) Preparation of short channels SBA-15-PVC membrane and its adsorption properties for removal of uranium(VI). J Radioanal Nuclear Chem 304(2):675–682

    CAS  Google Scholar 

  10. Li P, Wang J, Wang Y, Liang J, He B, Pan D, Fan Q, Wang X (2019) Photoconversion of U(VI) by \({\text{ TiO}}_2\): an efficient strategy for seawater uranium extraction. Chem Eng J 365:231–241

    CAS  Google Scholar 

  11. Wang X, Ding C, Xiangxue C, Wencai S, Yubing Z (2016) Adsorption of U(VI) on sericite in the presence of bacillus subtilis: a combined batch, EXAFS and modeling techniques. Geochimica et Cosmochimica Acta: J Geochem Soc Meteorit Soc 180:51–65

    Google Scholar 

  12. Hu T, Ding S, Deng H (2016) Application of three surface complexation models on U(VI) adsorption onto graphene oxide. Chem Eng J 289:270–276

    CAS  Google Scholar 

  13. Zhu K, Lu S, Gao Y, Zhang R, Tan X, Chen C (2017) Fabrication of hierarchical core–shell polydopamine\({\hbox{@}}\)\({\text{ MgAl }}-{\text{ LDH}}_s\) composites for the efficient enrichment of radionuclides. Appl Surf Sci 396:1726–1735

    CAS  Google Scholar 

  14. Yu X, Helvenston EM, Shuller-Nickles LC, Powell BA (2016) Surface complexation modeling of Eu(III) and U(VI) interactions with graphene oxide. Environ Sci Technol 50:1821–1827

    Google Scholar 

  15. Chen H, Chen Z, Zhao G, Zhang Z (2018) Enhanced adsorption of U(VI) and \(^{241}\) AM(III) from wastewater using \({\text{ Ca }}/{\text{ Al }}\) layered double hydroxide@carbon nanotube composites. J Hazard Mater 347:67–77

    CAS  PubMed  Google Scholar 

  16. Yue Y, Mayes RT, Kim J, Fulvio PF, Sun XG, Tsouris C, Chen J, Brown S, Dai S (2013) Seawater uranium sorbents: preparation from a mesoporous copolymer initiator by atom-transfer radical polymerization. Angewandte Chemie Int Ed 52(50):13458–13462

    CAS  Google Scholar 

  17. Yuan D, Long C, Xin X, Yuan L, Liao S, Wang Y (2015) Removal of uranium(VI) from aqueous solution by amidoxime functionalized superparamagnetic polymer microspheres prepared by a controlled radical polymerization in the presence of DPE. Chem Eng J 285:358–367

    Google Scholar 

  18. Tan L, Liu Q, Jing X, Liu J, Song J, Hu S, Liu L, Wang J (2015) Removal of uranium(VI) ions from aqueous solution by magnetic cobalt ferrite/multiwalled carbon nanotubes composites. Chem Eng J 273:307–315

    CAS  Google Scholar 

  19. Yang W, Bai ZQ, Shi WQ, Yuan LY, Tian T (2013) MOF-76: from a luminescent probe to highly efficient U(VI) sorption material. Chem Commun 49:10415–10417

    CAS  Google Scholar 

  20. Zhao Y, Wang X, Li J, Wang X (2015) Amidoxime functionalization of mesoporous silica and its high removal of U(VI). Polym Chem 6:5376–5384

    CAS  Google Scholar 

  21. Xiao J, Jing Y, Yao Y, Wang X, Jia Y (2019) Synthesis of amidoxime-decorated 3D cubic mesoporous silica via self-assembly co-condensation as a superior uranium(VI) adsorbent. J Mol Liq 277:843–855

    CAS  Google Scholar 

  22. Ladshaw AP, Wiechert AI, Sadananda D, Sotira Y, Costas T (2017) Amidoxime polymers for uranium adsorption: influence of comonomers and temperature. Materials 10:1268

    PubMed Central  Google Scholar 

  23. Wang Y, Wang Z, Ang R, Yang J, Liu N, Liao J, Yang Y, Tang J (2015) Synthesis of amidoximated graphene oxide nanoribbons from unzipping of multiwalled carbon nanotubes for selective separation of uranium(VI). RSC Adv 5:89309–89318

    CAS  Google Scholar 

  24. Zhang Z, Dong Z, Wang X, Ying D, Niu F, Cao X, Wang Y, Hua R, Liu Y, Wang X (2018) Ordered mesoporous polymer–carbon composites containing amidoxime groups for uranium removal from aqueous solutions. Chem Eng J 341:208–217

    CAS  Google Scholar 

  25. Xingjun W, Guojia J, Guiru Z, Chenghao S, Han Z, Congjie G (2019) Surface hydroxylation of SBA-15 via alkaline for efficient amidoxime-functionalization and enhanced uranium adsorption. Sep Purif Technol 209:623–635

    Google Scholar 

  26. Peng W, Huang G, Yang S, Guo C, Shi J (2019) Performance of biopolymer/graphene oxide gels for the effective adsorption of U(VI) from aqueous solution. J Radioanal Nuclear Chem 322(2):861–868

    CAS  Google Scholar 

  27. Wang Z, Zhao D, Wu C, Chen S, Wang Y, Chen C (2020) Magnetic metal organic frameworks/graphene oxide adsorbent for the removal of U(VI) from aqueous solution. Appl Radiat Isot 162:109160

    CAS  PubMed  Google Scholar 

  28. Li W, Liu Q, Liu J, Zhang H, Li R, Li Z, Jing X, Wang J (2017) Removal U(VI) from artificial seawater using facilely and covalently grafted polyacrylonitrile fibers with lysine. Appl Surf Sci 403:378–388

    CAS  Google Scholar 

  29. Hai NT, You SJ, Hosseini-Bandegharaei A, Chao HP (2017) Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: a critical review. Water Res 120:88–116

    Google Scholar 

  30. We X, Liu Q, Zhang H, Liu J, Wang J (2017) Rapid and efficient uranium(VI) capture by phytic acid/polyaniline/ FeOOH composites. J Colloid Interface Sci 511:1–11

    Google Scholar 

  31. Guibal E, Milot C, Tobin JM (1998) Metal-anion sorption by chitosan beads: equilibrium and kinetic studies. Indus Eng Chem Res 37(4):1454–1463

    Google Scholar 

  32. Freundlich H (1907) Über die adsorption in lösungen. Zeitschrift für Physikalische Chemie 57(1):385–470

    CAS  Google Scholar 

  33. Yang P, Liu Q, Liu J, Chen R, Li R, Bai X, Wang J (2018) Highly efficient immobilization of uranium(VI) from aqueous solution by phosphonate-functionalized dendritic fibrous nanosilica (DNFS). J Hazard Mater 363:248–257

    PubMed  Google Scholar 

  34. Dabrowski A (2001) Adsorption-from theory to practice. Adv Colloid Interface Sci 93:135–224

    CAS  PubMed  Google Scholar 

  35. Duan S, Xu X, Liu X, Wang Y, Li J (2017) Highly enhanced adsorption performance of U(VI) by non-thermal plasma modified magnetic \({\text{ Fe}}_{3}{{\rm O}}_{4}\) nanoparticles. J Colloid Interface Sci 513:92–103

    PubMed  Google Scholar 

  36. Imam EA, Elsayed I, Mahfouz MG, Tolba AA, Akashi T, Galhoum AA, Guibal E (2018) Synthesis of \(\alpha\)-aminophosphonate functionalized chitosan sorbents: effect of methyl versus phenyl group on uranium sorption. Chem Eng J 352:1022–1034

    CAS  Google Scholar 

  37. Zhang Z, Duan S, Chen H, Fengsong Z, Hayat T, Ahmed A, Jiaxing L (2018) Synthesis of porous magnetic \({\text{ Ni}}_{0.6}{\hbox{Fe}}_{2.4}{\hbox{O}}_{4}\) nanorods for highly efficient adsorption of U(VI). J Chem Eng Data ACS J Data 63(5): 1810–1820

  38. Wang XK, Chen CL, Zhou X, Tan XL, Hu WP (2005) Diffusion and sorption of U(VI) incompacted bentonite studied by a capillary method. Radiochim Acta 93:273–278

    CAS  Google Scholar 

  39. Lu Z, Yalou S, Lijuan S, Xiangchen S, Suwen C, Wangsuo W (2016) Dihydroxy bezladely derivatives functionalized mesoporous silica SBA-15 for the sorption of U(VI). J Radioanal Nuclear Chem 310:125–137

    Google Scholar 

  40. Padmavathy KS, Madhu G, Haseena PV (2016) A study on effects of pH, adsorbent dosage, time, initial concentration and adsorption isotherm study for the removal of hexavalent chromium (Cr(VI)) from wastewater by magnetite nanoparticles. Proc Technol 24:585–594

    Google Scholar 

  41. Sun Y, Shao D, Chen C, Yang S, Wang X (2013) Highly efficient enrichment of radionuclides on graphene oxide-supported polyaniline. Environ Sci Technol 47(17):9904–9910

    CAS  PubMed  Google Scholar 

  42. Nakkeeran E, Selvaraju N (2017) Biosorption of chromium(VI) in aqueous solutions by chemically modified strychnine tree fruit shell. Int J Phytoremediation 19(12):1065–1076

    CAS  PubMed  Google Scholar 

  43. Saini AS, Melo JS (2013) Biosorption of uranium by melanin: kinetic, equilibrium and thermodynamic studies. Bioresour Technol 149:155–162

    CAS  PubMed  Google Scholar 

  44. Cejka J (1999) Infrared spectroscopy and thermal analysis of the uranyl minerals. Rev Mineral Geochem 38:520–622

    Google Scholar 

  45. Tavengwa Nikita Tawanda, Cukrowska E, Chimuka L (2014) Preparation, characterization and application of \({\text{ NaHCO}}_3\) leached bulk U(VI) imprinted polymers endowed with \(\gamma\)-MPS coated magnetite in contaminated water. J Hazard Mater 267:221–228

    CAS  PubMed  Google Scholar 

  46. Sadeghi S, Azhdari H, Arabi H, Moghaddam AZ (2012) Surface modified magnetic \({\text{ Fe}}_3{{\rm O}}_{4}\) nanoparticles as a selective sorbent for solid phase extraction of uranyl ions from water samples. J Hazard Mater 215–216:208–216

    PubMed  Google Scholar 

  47. Mahramanlioglu M (2003) Adsorption of uranium on adsorbents produced from used tires. J Radioanal Nuclear Chem 256(1):99–105

    CAS  Google Scholar 

  48. Camacho LM, Parra RR, Deng S (2011) Uranium removal from groundwater by natural clinoptilolite zeolite: effects of pH and initial feed concentration. J Hazard Mater 189(1–2):286–293

    CAS  PubMed  Google Scholar 

  49. Abdi MR, Shakur HR, Saraee KRE, Sadeghi M (2014) Effective removal of uranium ions from drinking water using CuO/X zeolite based nanocomposites: effects of nano concentration and cation exchange. J Radioanal Nuclear Chem 300(3):1217–1225

    CAS  Google Scholar 

  50. Liu HJ, Jing PF, Liu XY, Du KJ, Sun YK (2016) Synthesis of \(\beta\)-cyclodextrin functionalized silica gel and its application for adsorption of uranium(VI). J Radioanal Nuclear Chem 310(1):1–8

    Google Scholar 

  51. Das D, Sureshkumar MK, Koley S, Mithal N, Pillai CGS (2010) Sorption of uranium on magnetite nanoparticles. J Radioanal Nuclear Chem 285:447–454

    CAS  Google Scholar 

  52. Yusan S, Aslani MAA, Turkozu DA, Aycan HA, Aytas S, Akyil S (2010) Adsorption and thermodynamic behaviour of U(VI) on the Tendurek volcanic tuff. J Radioanal Nuclear Chem 283:231–238

    CAS  Google Scholar 

  53. Zou W, Zhao L, Han R (2011) Adsorption characteristics of uranyl ions by manganese oxide coated sand in batch mode. J Radioanal Nuclear Chem 288:239–249

    CAS  Google Scholar 

  54. Caykara T, Alaslan SS, Inam R (2010) Competitive adsorption of uranyl ions in the presence of Pb(II) and Cd(II) ions by poly(glycidyl methacrylate) microbeads carrying amidoxime groups and polarographic determination. J Appl Polym Ence 104:4168–4172

    Google Scholar 

Download references

Acknowledgements

The authors will thank Xu Zhang for the help in characterization analysis. The authors gratefully acknowledge support from the Foundation of Heilongjiang Postdoctoral Science Foundation (LBH-Z17050), the China Postdoctoral Science Foundation (2019M651257), the Fundamental Research Funds for the Central Universities (3072020CF1501), and the Decommissioning of Nuclear Facilities and Special Funds for Radioactive Waste Management ([2017]955), the Innovation Funds of the Innovation Center of Nuclear Materials for National Defense Industry (ICNM-2020-ZH-15).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuqiu Ma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, P., Yu, Q., Zhang, X. et al. Removal of U(VI) from aqueous solution using AO-artificial zeolite. J Radioanal Nucl Chem 327, 39–47 (2021). https://doi.org/10.1007/s10967-020-07485-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07485-y

Keywords

Navigation