Skip to main content
Log in

Synthesis and characterization of chitosan–vermiculite composite beads for removal of uranyl ions: isotherm, kinetics and thermodynamics studies

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this study, a new material containing Chitosan (Ch)–Vermiculite (V) composite beads was synthesized with epichlorohydrin cross-linking agent and used to remove uranyl ions from the aqueous solution. The prepared new material was characterized by SEM, XRD, FTIR analyses and PZC measurement. The effects of significant parameters on adsorption including temperature, pH, concentration and time were investigated. The obtained results indicated that the new composites of Ch–V was revealed in different structure. The zeta potential analyses showed that electrostatic attraction existed during the adsorption process between the uranyl ions and Ch–V. The maximum adsorption capacity of material was calculated as 0.665 mol kg−1 by considering Langmuir equation. Adsorption kinetic was also explained with pseudo second order and intra particular diffusion models. Experimental studies clearly showed that the adsorption was endothermic and occurred spontaneously. The newly developed smart material has many advantages such as reusability, high adsorption capacity, selectivity and economics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Keith LS, Faroon OM, Fowler BA (2007) Uranium. İn: Berlin M, Zalups RK, Fowler BA (eds) Handbook on the toxicology of metals. Academic Press, Copenhagen, pp 880–903

  2. Crini G, Lichtfouse E (2019) Advantages and disadvantages of techniques used for wastewater treatment. Environ Chem Lett 7:145–155

    Article  Google Scholar 

  3. Gisi SD, Lofrano G, Grassi M, Notarnicola M (2016) Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: a review. Sustain Mater Techn 9:10–40

    Google Scholar 

  4. Luo M, Liu S, Li J, Luo F, Lin H, Yao P (2016) Uranium sorption characteristics onto synthesized pyrite. J Radioannal Nucl Chem 307:305–312

    Article  CAS  Google Scholar 

  5. Zhu R, Chena Q, Zhoua Q, Xi Y, Zhua J, He H (2016) Adsorbents based on montmorillonite for contaminant removal from water: a review. Appl Clay Sci 123:239–258

    Article  CAS  Google Scholar 

  6. Simsek S, Ulusoy U (2013) Adsorptive properties of sulfolignin–polyacrylamide graft copolymer for lead and uranium: effect of hydroxilamine–hydrochloride treatment. React Funct Polym 73:73–82

    Article  CAS  Google Scholar 

  7. Moghaddam RH, Dadfarnia S, Shabani AMH, Tavakol M (2019) Synthesis of composite hydrogel of glutamic acid, gum tragacanth, and anionic polyacrylamide by electron beam irradiation for uranium (VI) removal from aqueous samples: equilibrium, kinetics, and thermodynamic studies. Carbohydr Polym 206:352–361

    Article  CAS  Google Scholar 

  8. Salehi E, Daraei P, Shamsabadi AA (2016) A review on chitosan-based adsorptive membranes. Carbohydr Polym 152:419–432

    Article  CAS  Google Scholar 

  9. Kotal M, Bhowmick AK (2015) Polymer nanocomposites from modified clays: recent advances and challenges. Prog Polym Sci 51:127–187

    Article  CAS  Google Scholar 

  10. Malandrino M, Abollino O, Giacomino A, Aceto M, Mentasti E (2006) Adsorption of heavy metals on vermiculite: influence of pH and organic ligands. J Colloid Interf Sci 299:537–546

    Article  CAS  Google Scholar 

  11. Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632

    Article  CAS  Google Scholar 

  12. Zhang L, Zeng Y, Cheng Z (2016) Removal of heavy metal ions using chitosan and modified chitosan: a review. J Mol Liq 214:175–191

    Article  CAS  Google Scholar 

  13. Simsek S, Senol ZM, Ulusoy HI (2017) Synthesis and characterization of a composite polymeric materialincluding chelating agent for adsorption of uranyl ions. J Hazard Mater 338:437–446

    Article  CAS  Google Scholar 

  14. Chen L, Wu P, Chen M, Lai X, Ahmed Z, Zhu N, Dang Z, Bi Y, Liu T (2018) Preparation and characterization of the eco-friendly chitosan/vermiculite biocomposite with excellent removal capacity for cadmium and lead. Appl Clay Sci 159:74–82

    Article  CAS  Google Scholar 

  15. Saleh TA, Sarı A, Tuzen M (2016) Chitosan-modified vermiculite for As (III) adsorption from aqueous solution: equilibrium, thermodynamic and kinetic studies. J Mol Liq 219:937–945

    Article  CAS  Google Scholar 

  16. Padilla-Ortega E, Darder M, Aranda P, Gouveia RF, Leyva-Ramos R, Ruiz-Hitzky E (2016) Ultrasound assisted preparation of chitosan–vermiculite bionanocomposite foams for cadmium uptake. Appl Clay Sci 130:40–49

    Article  CAS  Google Scholar 

  17. Prakash N, Soundarrajan M, Vendan SA, Sudha PN, Renganathan NG (2017) Contemplating the feasibility of vermiculate blended chitosan for heavy metal removal from simulated industrial wastewater. Appl Clay Sci 7:4207–4218

    CAS  Google Scholar 

  18. Long H, Wua P, Yang L, Huang Z, Zhu N, Hu Z (2014) Efficient removal of cesium from aqueous solution with vermiculite of enhanced adsorption property through surface modification by ethylamine. J Colloid Interf Sci 428:295–301

    Article  CAS  Google Scholar 

  19. Prakash N, Soundarrajan M, Vendan Arungalai S, Sudha PN, Renganathan NG (2017) Contemplating the feasibility of vermiculate blended chitosan for heavy metal removal from simulated industrial wastewater. Appl Water Sci 7:4207–4218

    Article  CAS  Google Scholar 

  20. Zheng Y, Li P, Zhang J, Wang A (2007) Study on superabsorbent composite XVI Synthesis, characterization and swelling behaviors of poly(sodium acrylate)/vermiculite superabsorbent composites. Eur Polym J 43:1691–1698

    Article  CAS  Google Scholar 

  21. Ilaiyaraja P, Ashish Kumar Singh D, Sivasubramanian K, Ponraju D, Venkatraman BI (2013) Adsorption of uranium from aqueous solution by PAMAM dendron functionalized styrene divinylbenzene. J Hazard Mater 251:155–166

    Article  Google Scholar 

  22. Lima EC, Adebayo MA, Machado FM (eds) (2015) Kinetic and equilibrium models of adsorption CP Bergmann. Springer, New York, pp 33–69

    Google Scholar 

  23. Lima EC, Hosseini-Bandegharaei A, Moreno-Piraján JC, Anastopoulos I (2019) A critical review of the estimation of the thermodynamic parameters on adsorption equilibria wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption. J Mol Liq 273:425–434

    Article  CAS  Google Scholar 

  24. Zhiwei N, Qiaohui F, Wenhua W, Junzheng X, Lei C, Wangsuo W (2009) Effect of pH, ionic strength and humic acid on the sorption of uranium(VI) to attapulgite. Appl Radiat Isot 9:1582–1590

    Google Scholar 

  25. Liu Y, Cao X, Hua R, Wang Y, Liu Y, Pang C, Wang Y (2010) Selective adsorption of uranyl ion on ion-imprinted chitosan/PVA cross-linked hydrogel. Hydrometallurgy 104:150–155

    Article  CAS  Google Scholar 

  26. Hritcu D, Humelnicu D, Dodi G, Popa MI (2012) Magnetic chitosan composite particles: evaluation of thorium and uranyl ion adsorption from aqueous solutions. Carbohydr Polym 87:1185–1191

    Article  CAS  Google Scholar 

  27. Zhuang S, Cheng R, Kang M, Wang J (2018) Kinetic and equilibrium of U(VI) adsorption onto magnetic amidoxime-functionalized chitosan beads. J Clean Prod 188:655–661

    Article  CAS  Google Scholar 

  28. Yu SL, Dai Y, Caol XH, Zhang ZB, Liu YH, Ma HJ, Xiao SJ, Lai ZJ, Chen HJ, Zheng Z, Le ZG (2016) Adsorption of uranium(VI) from aqueous solution using a novel magnetic hydrothermal cross-linking chitosan. J Radioannal Nucl Chem 310:651–660

    Article  CAS  Google Scholar 

  29. Zhou L, Ouyang J, Shehzad H, Le Z, Li Z, Adesina AA (2018) Adsorption of U(VI) onto the carboxymethylated chitosan/Nabentonite membranes: kinetic, isothermic and thermodynamic studie. J Radioannal Nucl Chem 317:1377–1385

    Article  CAS  Google Scholar 

  30. Liao Y, Wang M, Chen D (2018) Production of three-dimensional porous polydopamine-functionalized attapulgite/chitosan aerogel for uranium(VI) adsorption. J Radioannal Nucl Chem 316:635–647

    Article  CAS  Google Scholar 

  31. Liu J, Zhao C, Yuan G, Dong Y, Yang J, Li F, Liao J, Yang Y, Liu N (2018) Adsorption of U(VI) on a chitosan/polyaniline composite in the presence of Ca/Mg-U(VI)-CO3 complexes. Hydrometallurgy 175:300–311

    Article  CAS  Google Scholar 

  32. Kaynar UH, Cınar S, Cam Kaynar S, Ayvacıklı M, Aydemir T (2018) Modelling and optimization of uranium (VI) ions adsorption onto nano-ZnO/chitosan bio-composite beads with response surface methodology (RSM). J Polym Environ 26:2300–2310

    Article  CAS  Google Scholar 

  33. Pan D, Fan Q, Fan F, Tang Y, Zhang Y, Wu W (2017) Removal of uranium contaminant from aqueous solution by chitosan@attapulgite composite. Sep Purif Technol 177:86–93

    Article  CAS  Google Scholar 

  34. Sun Z, Chen D, Chen B, Kong L, Su M (2018) Enhanced uranium(VI) adsorption by chitosan modified phosphate rock. Colloids Surf A 547:141–147

    Article  CAS  Google Scholar 

  35. Huang G, Peng W, Yang S (2018) Synthesis of magnetic chitosan/graphene oxide nanocomposites and its application for U(VI) adsorption from aqueous solution. J Radioannal Nucl Chem 317:337–344

    Article  CAS  Google Scholar 

  36. Basu H, Singhal RK, Saha S, Pimple MV (2017) Chitosan impregnated Ca-alginate: a new hybrid material for removal of uranium from potable water. J Radioannal Nucl Chem 314:1905–1914

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The present study was partly supported by Cumhuriyet University Scientific Research Projects Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeynep Mine Şenol.

Ethics declarations

Conflict of interest

The authors strongly declare that no scientific and/or financial conflicts of interest, exists with other people or institutions.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Şenol, Z.M., Şimşek, S., Özer, A. et al. Synthesis and characterization of chitosan–vermiculite composite beads for removal of uranyl ions: isotherm, kinetics and thermodynamics studies. J Radioanal Nucl Chem 327, 159–173 (2021). https://doi.org/10.1007/s10967-020-07481-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07481-2

Keywords

Navigation