Skip to main content
Log in

Performance evaluation of sodium alginate/polyvinyl alcohol/polyethylene oxide/ZSM5 zeolite hybrid adsorbent for ion uptake from aqueous solutions: a case study of thorium (IV)

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this paper, the thorium uptake from aqueous solution using SA/PVA/PEO/ZSM5 nanohybrid adsorbent has been investigated. The effect of zeolite content, pH, adsorbent dose, contact time, initial concentration, and temperature parameters was scrutinized. Using adsorbent containing 10 wt% zeolite and at pH 5 and 45 °C, the highest uptake of thorium (139.2 mg g−1) occurred. Kinetic studies have shown that the process of thorium uptake follows the double-exponential kinetic model. Using different isothermal models, uptake isotherm was studied. The results showed that the thorium uptake onto the adsorbent is physical, spontaneous and endothermic reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zahakifar F, Charkhi A, Torab-Mostaedi M, Davarkhah R (2017) Performance evaluation of hollow fiber renewal liquid membrane for extraction of uranium (VI) from acidic sulfate solution. Radiochim Acta 106(3):181–189

    Google Scholar 

  2. Zahakifar F, Charkhi A, Torab-Mostaedi M, Davarkhah R (2018) Kinetic study of uranium transport via a bulk liquid membrane containing Alamine 336 as a carrier. J Radioanal Nucl Chem:1–9

  3. Zahakifar F, Charkhi A, Torab-Mostaedi M, Davarkhah R, Yadollahi A (2018) Effect of surfactants on the performance of hollow fiber renewal liquid membrane (HFRLM): a case study of uranium transfer. J Radioanal Nucl Chem 318(2):973–983

    CAS  Google Scholar 

  4. Frondel C (1958) Systematic mineralogy of uranium and thorium, vol 1064. US Government Printing Office

  5. Zahakifar F, Alamdar Milani S, Charkhi A (2018) Continuous bulk liquid membrane technique for thorium transport: modeling and experimental validation. J Iran Chem Soc. https://doi.org/10.1007/s13738-018-1516-7

  6. Prasad MNV (2008) Trace elements as contaminants and nutrients: consequences in ecosystems and human health. John Wiley & Sons

  7. Cheira MF, Orabi AS, Atia BM, Hassan SM (2018) Solvent extraction and separation of thorium (IV) from chloride media by a Schiff base. J Solut Chem 47(4):611–633

    CAS  Google Scholar 

  8. Yousef L, Saad M, Afifi S, Ismail A (2019) Leaching and precipitation of thorium ions from Cataclastic rocks. Abu Rusheid Area, South Eastern Desert, Egypt

    Google Scholar 

  9. Moon H-C (1989) Equilibrium ultrafiltration of hydrolyzed thorium (IV) solutions. Bull Kor Chem Soc 10(3):270–272

    CAS  Google Scholar 

  10. Zahakifar F, Keshtkar A, Souderjani EZ, Moosavian M (2020) Use of response surface methodology for optimization of thorium (IV) removal from aqueous solutions by electrodeionization (EDI). Prog Nucl Energy 124:103335

    CAS  Google Scholar 

  11. Fitzsimmons J, Abraham A, Catalano D, Younes A, Cutler CS, Medvedev D (2019) Evaluation of inorganic ion exchange materials for purification of 225Ac from thorium and radium radioisotopes. J Med Imaging Radiat Sci 50(1):S11

    Google Scholar 

  12. Xiu T, Liu Z, Wang Y, Wu P, Du Y, Cai Z (2019) Thorium adsorption on graphene oxide nanoribbons/manganese dioxide composite material. J Radioanal Nucl Chem 319(3):1059–1067

    CAS  Google Scholar 

  13. Liatsou I, Christodoulou E, Pashalidis I (2018) Thorium adsorption by oxidized biochar fibres derived from Luffa cylindrica sponges. J Radioanal Nucl Chem 317(2):1065–1070

    CAS  Google Scholar 

  14. Yin Z, Pan D, Liu P, Wu H, Li Z, Wu W (2018) Sorption behavior of thorium (IV) onto activated bentonite. J Radioanal Nucl Chem 316(1):301–312

    CAS  Google Scholar 

  15. Kaynar UH, Şabikoğlu İ (2018) Adsorption of thorium (IV) by amorphous silica; response surface modelling and optimization. J Radioanal Nucl Chem 318(2):823–834

    CAS  Google Scholar 

  16. Ruthven DM (1984) Principles of adsorption and adsorption processes. John Wiley & Sons

  17. Xiong XH, Yuan YH, Huang B, He M, Chen H, Luo YC, Zhu YA, Luo TA, Chen QS (2019) Th (IV) adsorption onto titanium tetrachloride modified sodium bentonite. J Radioanal Nucl Chem 319(3):805–815

    CAS  Google Scholar 

  18. Liu H, Qi C, Feng Z, Lei L, Deng S (2017) Adsorption of trace thorium (IV) from aqueous solution by mono-modified β-cyclodextrin polyrotaxane using response surface methodology (RSM). J Radioanal Nucl Chem 314(3):1607–1618

    CAS  Google Scholar 

  19. Han R, Zou W, Wang Y, Zhu L (2007) Removal of uranium (VI) from aqueous solutions by manganese oxide coated zeolite: discussion of adsorption isotherms and pH effect. J Environ Radioact 93(3):127–143

    CAS  PubMed  Google Scholar 

  20. Erdem E, Karapinar N, Donat R (2004) The removal of heavy metal cations by natural zeolites. J Colloid Interface Sci 280(2):309–314

    CAS  PubMed  Google Scholar 

  21. Hong M, Yu L, Wang Y, Zhang J, Chen Z, Dong L, Zan Q, Li R (2019) Heavy metal adsorption with zeolites: the role of hierarchical pore architecture. Chem Eng J 359:363–372

    CAS  Google Scholar 

  22. Liu X, Tian R, Ding W, He Y, Li H (2019) Adsorption selectivity of heavy metals by Na-clinoptilolite in aqueous solutions. Adsorption 25(4):747–755

    CAS  Google Scholar 

  23. Wojciechowska KM, Król M, Bajda T, Mozgawa W (2019) Sorption of heavy metal cations on Mesoporous ZSM-5 and Mordenite zeolites. Materials 12(19):3271

    CAS  PubMed Central  Google Scholar 

  24. Mukti RR (2016) Characteristics of heavy metals adsorption Cu, Pb and Cd using synthetics zeolite Zsm-5. J Trop Soils 20(2):77–83

    Google Scholar 

  25. Zhang S, Cui M, Chen J, Ding Z, Wang X, Mu Y, Meng C (2019) Modification of synthetic zeolite X by thiourea and its adsorption for Cd (II). Mater Lett 236:233–235

    CAS  Google Scholar 

  26. Chen JH, Li GP, Liu QL, Ni JC, Wu WB, Lin JM (2010) Cr (III) ionic imprinted polyvinyl alcohol/sodium alginate (PVA/SA) porous composite membranes for selective adsorption of Cr (III) ions. Chem Eng J 165(2):465–473

    CAS  Google Scholar 

  27. Tabatabaeefar A, Keshtkar AR, Talebi M, Abolghasemi H (2020) Polyvinyl alcohol/alginate/zeolite nanohybrid for removal of metals. Chem Eng Technol 43(2):343–354

    CAS  Google Scholar 

  28. Habiba U, Afifi AM, Salleh A, Ang BC (2017) Chitosan/(polyvinyl alcohol)/zeolite electrospun composite nanofibrous membrane for adsorption of Cr6+, Fe3+ and Ni2+. J Hazard Mater 322:182–194

    CAS  PubMed  Google Scholar 

  29. Rad LR, Momeni A, Ghazani BF, Irani M, Mahmoudi M, Noghreh B (2014) Removal of Ni2+ and Cd2+ ions from aqueous solutions using electrospun PVA/zeolite nanofibrous adsorbent. Chem Eng J 256:119–127

    CAS  Google Scholar 

  30. Sabarish R, Unnikrishnan G (2018) PVA/PDADMAC/ZSM-5 zeolite hybrid matrix membranes for dye adsorption: fabrication, characterization, adsorption, kinetics and antimicrobial properties. J Environ Chem Eng 6(4):3860–3873

    CAS  Google Scholar 

  31. Habiba U, Siddique TA, Lee JJL, Joo TC, Ang BC, Afifi AM (2018) Adsorption study of methyl orange by chitosan/polyvinyl alcohol/zeolite electrospun composite nanofibrous membrane. Carbohydr Polym 191:79–85

    CAS  PubMed  Google Scholar 

  32. Sabarish R, Unnikrishnan G (2018) Polyvinyl alcohol/carboxymethyl cellulose/ZSM-5 zeolite biocomposite membranes for dye adsorption applications. Carbohydr Polym 199:129–140

    CAS  PubMed  Google Scholar 

  33. Talebi M, Abbasizadeh S, Keshtkar AR (2017) Evaluation of single and simultaneous thorium and uranium sorption from water systems by an electrospun PVA/SA/PEO/HZSM5 nanofiber. Process Saf Environ Prot 109:340–356

    CAS  Google Scholar 

  34. Nayak AK, Pal A (2019) Development and validation of an adsorption kinetic model at solid-liquid interface using normalized Gudermannian function. J Mol Liq 276:67–77

    CAS  Google Scholar 

  35. de la Luz-Asunción M, Pérez-Ramírez EE, Martínez-Hernández AL, Castano VM, Sánchez-Mendieta V, Velasco-Santos C (2019) Non-linear modeling of kinetic and equilibrium data for the adsorption of hexavalent chromium by carbon nanomaterials: dimension and functionalization. Chin J Chem Eng 27(4):912–919

    Google Scholar 

  36. Tian J, Wei J, Zhang H, Kong Z, Zhu Y, Qin Z (2019) Graphene oxide-functionalized dual-scale channels architecture for high-throughput removal of organic pollutants from water. Chem Eng J 359:852–862

    CAS  Google Scholar 

  37. Chatterjee S, Sivareddy I, De S (2017) Adsorptive removal of potentially toxic metals (cadmium, copper, nickel and zinc) by chemically treated laterite: single and multicomponent batch and column study. J Environ Chem Eng 5(4):3273–3289

    CAS  Google Scholar 

  38. Kubilay Ş, Gürkan R, Savran A, Şahan T (2007) Removal of Cu (II), Zn (II) and Co (II) ions from aqueous solutions by adsorption onto natural bentonite. Adsorption 13(1):41–51

    CAS  Google Scholar 

  39. Dada A, Olalekan A, Olatunya A, Dada O (2012) Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk. IOSR J Appl Chem 3(1):38–45

    Google Scholar 

  40. Zahakifar F, Keshtkar A, Nazemi E,aqueous Zaheri A (2017) Optimization of operational conditions in continuous electrodeionization method for maximizing Strontium and Cesium removal from aqueous solutions using artificial neural network. Radiochim Acta. https://doi.org/10.1515/ract-2016-2709

    Article  Google Scholar 

  41. Balarak D, Mostafapour FK, Azarpira H, Joghataei A (2017) Langmuir, Freundlich, Temkin and Dubinin–radushkevich isotherms studies of equilibrium sorption of ampicilin unto montmorillonite nanoparticles. J Pharm Res Int 20:1–9

    Google Scholar 

  42. Hu Q, Zhang Z (2019) Application of Dubinin–Radushkevich isotherm model at the solid/solution interface: a theoretical analysis. J Mol Liq 277:646–648

    CAS  Google Scholar 

  43. Bhainsa KC, D'Souza SF (2009) Thorium biosorption by Aspergillus fumigatus, a filamentous fungal biomass. J Hazard Mater 165(1–3):670–676

    CAS  PubMed  Google Scholar 

  44. Hassan Khani M, Reza Keshtkar A, Meysami B, Firouz Zarea M, Jalali R (2006) Biosorption of uranium from aqueous solutions by nonliving biomass of marinealgae Cystoseira indica. Electron J Biotechnol 9(2):10–20

    Google Scholar 

  45. Humelnicu D, Bulgariu L, Macoveanu M (2010) On the retention of uranyl and thorium ions from radioactive solution on peat moss. J Hazard Mater 174(1–3):782–787

    CAS  PubMed  Google Scholar 

  46. Nilchi A, Dehaghan TS, Garmarodi SR (2013) Kinetics, isotherm and thermodynamics for uranium and thorium ions adsorption from aqueous solutions by crystalline tin oxide nanoparticles. Desalination 321:67–71

    CAS  Google Scholar 

  47. Abbasizadeh S, Keshtkar AR, Mousavian MA (2013) Preparation of a novel electrospun polyvinyl alcohol/titanium oxide nanofiber adsorbent modified with mercapto groups for uranium (VI) and thorium (IV) removal from aqueous solution. Chem Eng J 220:161–171

    CAS  Google Scholar 

  48. Tsezos M, Volesky B (1981) Biosorption of uranium and thorium. Biotechnol Bioeng 23(3):583–604

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Reza Keshtkar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zahakifar, F., Keshtkar, A.R. & Talebi, M. Performance evaluation of sodium alginate/polyvinyl alcohol/polyethylene oxide/ZSM5 zeolite hybrid adsorbent for ion uptake from aqueous solutions: a case study of thorium (IV). J Radioanal Nucl Chem 327, 65–72 (2021). https://doi.org/10.1007/s10967-020-07479-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07479-w

Keywords

Navigation