Skip to main content
Log in

Determination of uranium content in ammonium uranyl carbonate (AUC) and triuranium octoxide (U3O8)

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

This paper presents a fast and reproducible method for determination of uranium content in ammonium uranyl carbonate (AUC) and U3O8 obtained from it. The effects of high activity and specific chemical composition of the samples were minimized by adapting the radiochemical procedures for analysis of a small amount of samples. Measurements were made by alpha-spectrometry and ICP-MS. The results show that the applied procedures are stable with significant yield and can be successfully used for analysis of AUC and U3O8. Comparison of the data obtained by alpha-spectrometry and by ICP-MS shows that the measured values are in good coincidence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chou KS, Lin DY (1989) Precipitation studies of ammonium uranyl carbonate from UO2F2 solutions. J Nucl Mater 165:171–178

    Article  CAS  Google Scholar 

  2. Seneda JA, Figueiredo FF, Abrao A, Carvalho FMS, Frajndlich EUC (2001) Recovery of uranium from the filtrate of ‘ammonium diuranate’ prepared from uranium hexafluoride. J Alloys Compd 323–324:838–841

    Article  Google Scholar 

  3. Mellah A, Chegrouche S, Barkat M (2007) The precipitation of ammonium uranyl carbonate (AUC): thermodynamic and kinetic investigations. Hydrometallurgy 85:163–171

    Article  CAS  Google Scholar 

  4. Ladeira ACQ, Morais CA (2005) Uranium recovery from industrial effluent by ion exchange—column experiments. Miner Eng 18:1337–1340

    Article  CAS  Google Scholar 

  5. Dolchinkov NT, Paramonova TA (2019) Overview and analysis of the development of uranium mining in the Republic of Bulgaria. Int Sci J Sci Bus Soc 2:69–72

    Google Scholar 

  6. Kolev S (2017) Quality assesment of surface and groundwater in the vicinity of “Eleshnica” tailing pond, Bulgaria. Acta Geobalc 3:43–49

    Article  Google Scholar 

  7. Dikov D, Bozhkov I (2014) Uranium deposits in Republic of Bulgaria—state of art and potential. Rev Bulg Geol Soc 75:131–137

    Google Scholar 

  8. Stoiber C, Cherf A, Tonhauser W, Vez Carmona ML (2010) Handbook on nuclear law: implementing legislation. IAEA, Vienna

    Google Scholar 

  9. Intenational Atomic Energy Agency (1999) Technical options for the remediation of contaminated groundwater. Annex VI: radioactively contaminated land areas and waters in Bulgaria. IAEA-TECDOC-1088, IAEA, Vienna

  10. Varga Z, Wallenius M, Mayer K, Meppen M (2011) Proc Radiochim Acta. https://doi.org/10.1524/rcpr.2011.0004

    Article  Google Scholar 

  11. Srncik M, Mayer K, Hrnecek E, Wallenius M, Varga Z, Steier P, Wallner G (2011) Investigation of the 236U/238U isotope abundance ratio in uranium ores and yellow cake samples. Radiochim Acta 99:335–339

    Article  CAS  Google Scholar 

  12. Gureli L, Apak R (2005) Recovery of uranium from ammonium uranyl carbonate (AUC) effluents by combined ion exchange and membrane separation. Sep Sci Technol 39:1857–1869

    Article  Google Scholar 

  13. Khattab MR, Tuovinen H, Lehto J, El Assay IE, El Feky MG, El-Rahman MAA (2017) Determination of uranium in Egyptian graniteic ore by gamma, alpha, and mass spectrometry. Instrum Sci Technol 45:338–348

    Article  CAS  Google Scholar 

  14. Silva Neto JB, Urano de Carvalho EF, Garcia RHL, Saliba-Silva AM, Riella HG, Durazzo M (2017) Production of uranium tetrafluoride from the effluent generated in the reconversion via ammonium uranyl carbonate. Nucl Eng Technol 49:1711–1716

    Article  CAS  Google Scholar 

  15. Tuovinen H, Vesterbacka D, Pohjolainen E, Read D, Solatie D, Lehto J (2015) A comparison of analytical methods for determining uranium and thorium in ores and mill tailings. J Geochem Explor 148:174–180

    Article  CAS  Google Scholar 

  16. Yokoyama T, Makishima A, Nakamura E (1999) Separation of thorium and uranium from silicate rock samples using two commercial extraction chromatographic resins. Anal Chem 71:135–141

    Article  CAS  Google Scholar 

  17. Maxwell SL (2001) Rapid mass spectrometry method for uranium and plutonium. Radioact Radiochem 12:12–20

    CAS  Google Scholar 

  18. Horwitz EP, Dietz ML, Chiarizia R, Diamond H, Essling AM, Graczyk D (1992) Separation and preconcentration of uranium from acidic media by extraction chromatography. Anal Chim Acta 266:25–37

    Article  CAS  Google Scholar 

  19. Zeev K (2014) Analytical chemistry of uranium: environmental, forensic, nuclear and toxicological applications. CRC Press, Taylor & Francis Group, Boca Raton

    Google Scholar 

  20. L’Annunziata M (2012) Handbook of radioactivity analysis. Academic Press, Cambridge

    Google Scholar 

  21. Shinohara N, Kohno N (1989) Rapid preparation of high-resolution sources for alpha ray spectrometry of actinides in spend fuel. Appl Radiat Isot 40:41–45

    Article  CAS  Google Scholar 

  22. Sill CW, Olson DG (1970) Sources and prevention of recoil contamination of solid state alpha detectors. Anal Chem 42:1596–1607

    Article  CAS  Google Scholar 

  23. Sill CW, Puphal KW, Hindman FD (1974) Simultaneous determination of alpha emitting nuclides of radium through californium in soil. Anal Chem 46:1725–1737

    Article  CAS  Google Scholar 

  24. Sill CW, Williams RL (1981) Preparation of actinides for alpha spectrometry without electrodeposition. Anal Chem 53:412–415

    Article  CAS  Google Scholar 

  25. Intenational Atomic Energy Agency (1999) Generic procedures for monitoring in a nuclear or radiological emergency. IAEA-TECDOC 1092. IAEA, Vienna. https://www-pub.iaea.org/MTCD/publications/PDF/te_1092_web.pdf. Accessed 14 Oct 2020

  26. Thompson M, Wood R (1993) The international harmonized protocol for the proficiency testing of (chemical) analytical laboratories. Pure Appl Chem 65:2123–2144

    Article  CAS  Google Scholar 

  27. Intenational Atomic Energy Agency (2004) Quantifying uncertainty in nuclear analytical measurements, IAEA-TECDOC-1401. IAEA, Vienna. https://www-pub.iaea.org/MTCD/Publications/PDF/te_1401_web.pdf. Accessed 14 Oct 2020

  28. Leo WR (1992) Techniques for nuclear and particle physics experiments. Springer, Berlin

    Google Scholar 

  29. Patel SB (2011) Nuclear physics: an introduction. New Age International Publishers, New Delhi

    Google Scholar 

  30. CODATA (2018) Committee on data for science and technology. The NIST reference on constants, units, and uncertainty. CODATA

Download references

Acknowledgements

This work was partially supported by the Bulgarian National Science Fund under contract number КП-06-H39/14 (12.12.2019) “Research of new approaches in the activation analysis and radiochemistry of technogenic radionuclides important for man and environment.”

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lyuben Dobrev or Tzvetana Nonova.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dobrev, L., Nonova, T. Determination of uranium content in ammonium uranyl carbonate (AUC) and triuranium octoxide (U3O8). J Radioanal Nucl Chem 326, 1543–1550 (2020). https://doi.org/10.1007/s10967-020-07471-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07471-4

Keywords

Navigation