Skip to main content
Log in

Terminal alkyne semi-tritiation with Lindlar catalyst and its mechanism implications

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

It has been nearly 70 years since the discovery of Lindlar catalyst and its valuable ability to semi-hydrogenate alkynes to cis olefins. The Lindlar catalyst semi-hydrogenation mechanism appears to still be an ongoing discussion. Spectroscopy (NMR, MS) results are presented regarding the Lindlar catalyst semi-tritiation of terminal alkynes, providing evidence of a novel tritium for hydrogen exchange process taking place.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Scheme 3
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lindlar H (1952) A new catalyst for selective hydrogenations. Helv Chim Acta 35:446–450

    Article  CAS  Google Scholar 

  2. Filer CN (2020) Lindlar catalyst: its discovery, magic and mystery. Chem Educ 25:18–24

    CAS  Google Scholar 

  3. Ulan JG, Maier WF, Smith DA (1987) Rational design of a heterogeneous Pd catalyst for the selective hydrogenation of alkynes. J Org Chem 52:3132–3142

    Article  CAS  Google Scholar 

  4. Ulan JG, Kuo E, Maier WF, Rai RS, Thomas G (1987) Effect of lead acetate in the preparation of the Lindlar catalyst. J Org Chem 52:3126–3132

    Article  CAS  Google Scholar 

  5. McEwen AB, Guttieri MJ, Maier WF, Laine RM, Shvo Y (1983) Metallic palladium, the actual catalyst in Lindlar and Rosenmund reductions? J Org Chem 48:4436–4438

    Article  CAS  Google Scholar 

  6. Yu J, Spencer JB (1998) Discovery that quinoline and triphenylphosphine alter the electronic properties of hydrogenation catalysts. Chem Commun 10:1103–1104

    Article  Google Scholar 

  7. Yu J, Spencer JB (1997) Regioselective hydrometalation of alkenes reveals the amphipolar nature of the Pd-H bond in heterogeneous hydrogenation. J Org Chem 62:8618–8619

    Article  CAS  Google Scholar 

  8. Garcia-Mota M, Gomez-Diaz J, Novell-Leruth G, Vargas-Fuentes C, Bellarosa L, Bridier B, Perez-Ramirez J, Lopez N (2011) A density functional theory study of the “mythic” Lindlar hydrogenation catalyst. Theor Chem Acc 128:663–673

    Article  CAS  Google Scholar 

  9. Albers PW, Moebus K, Frost CD, Parker SF (2011) Characterization of beta-palladium hydride formation in the Lindlar catalyst and in carbon-supported palladium. J Phys Chem C 115:24485–24493

    Article  CAS  Google Scholar 

  10. Buchi G, Wuest H (1971) Synthetic studies on damascenones. Helv Chim Acta 54:1767–1776

    Article  Google Scholar 

  11. Ghosh AK, Krishnan K (1998) Chemoselective catalytic hydrogenation of alkenes by Lindlar catalyst. Tetrahedron Lett 39:947–948

    Article  CAS  Google Scholar 

  12. Shi Y, Peng LF, Kishi Y (1997) Enantioselective total synthesis of fumonisin B2. J Org Chem 62:5666–5667

    Article  CAS  Google Scholar 

  13. Righi G, Rossi L (1996) Mild regioselective catalytic hydrogenation of alpha, beta-unsaturated carbonyl compounds with Lindlar catalyst. Synth Commun 26:1321–1327

    Article  CAS  Google Scholar 

  14. Ahern DG, Egan JA, Nugent RP, Filer CN (2013) Synthesis of some 6-keto morphinan mu opiate receptor agonists labelled with tritium at high specific activity. J Radioanal Nucl Chem 295:1029–1031

    Article  CAS  Google Scholar 

  15. Seki I, Takagi H, Kobayashi S (1964) Pharmacological studies on morphine derivatives. I. Pharmacological actions of several normorphines and 14-hydroxynormorphinones. Yakugaku Zasshi 84:255–267

    Article  CAS  Google Scholar 

  16. Silverstein RM, Bassler GC (1967) Spectrometric identification of organic compounds. Wiley, New York, p 118

    Google Scholar 

  17. Williams PG, Morimoto H, Wemmer DE (1988) Application of modern 3H NMR techniques to analysis of complex isotopic products from a hydrogenation reaction. J Am Chem Soc 110:8038–8044

    Article  CAS  Google Scholar 

  18. Randall MH, Altman LJ, Lefkowitz RJ (1977) Structure and biological activity of (-)-[3H] dihydroalprenolol, a radioligand for studies of beta-adrenergic receptors. J Med Chem 20:1090–1094

    Article  CAS  Google Scholar 

  19. Feoktistov VM, Bunina-Krivorukova LI, Balyan KV (1978) Condensation of aromatic compounds with allylic halides. XXIII. Preparation of p-cresol beta, gamma, gamma-D3-allyl ether and its rearrangement in the presence of Lewis acids. Zh Org Khim 14:807–811

    CAS  Google Scholar 

  20. Filer CN, Ahern DG, Fazio R, Seguin RJ (1981) Reduction of the N-propargyl group with tritium. General procedure for the preparation of N-[2, 3-3H] allyl opiate ligands at high specific activity. J Org Chem 46:4968–4970

    Article  CAS  Google Scholar 

  21. Woodward RB, Cava MP, Ollis WD, Hunger A, Daeniker HU, Schenker K (1963) The total synthesis of strychnine. Tetrahedron 19:247–288

    Article  CAS  Google Scholar 

  22. Perly B, Pappalardo GC, Grassi A (1986) Molecular determinants for drug-receptor interactions. 6. Proton 500 MHz NMR spectra of the narcotic antagonists naloxone and naltrexone by two dimensional 1H–1H chemical shift correlation spectroscopy. Z Naturforsch 41B:231–238

    Article  CAS  Google Scholar 

  23. Funke CW, de Graaf JS (1986) A 1H and 13C nuclear magnetic resonance study of three quaternary salts of naloxone and oxymorphone. J Chem Soc Perkin Trans II:735–738

    Article  Google Scholar 

  24. Coe JW, Hawes CR, Towers P (1995) A preparation of high specific activity [11, 12-3H]-9-cis-retinoic acid. J Label Compd Radiopharm 36:587–594

    Article  CAS  Google Scholar 

  25. Joly N, Vaillant C, Cohen AM, Martin P, El Essassi M, Massoui M, Banoub J (2007) Structural determination of the novel fragmentation routes of zwitteronic morphine opiate antagonists naloxonazine and naloxone hydrochlorides using electrospray ionization tandem mass spectrometry. Rapid Commun Mass Spectrom 21:1062–1074

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Crist N. Filer.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filer, C.N. Terminal alkyne semi-tritiation with Lindlar catalyst and its mechanism implications. J Radioanal Nucl Chem 326, 1727–1732 (2020). https://doi.org/10.1007/s10967-020-07468-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07468-z

Keywords

Navigation