Skip to main content
Log in

Preparation of 5-[131I]iodotubercidin for the detection of adenosine kinase

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

5-Iodotubercidin is a prototype adenosine kinase (AK) inhibitor with potent anti-seizure activity in rodent epilepsy models. Using the chloramine-T method for radioiodination of tubercidin with 131I, we prepared no-carrier-added 5-[131I]iodotubercidin (5-[131I]IT) in a radiochemical yield of 61 ± 13% and with a radiochemical purity of > 99% (molar activity = 10–40 GBq/µmol). In vitro competition and saturation experiments demonstrated specific binding of 5-[131I]IT in rodent brain slices (KD ~ 31 nM), but ex vivo autoradiography revealed its accumulation in cerebral vessels. We conclude that 5-[131I]IT could be a useful tool for the detection and quantification of AK in in vitro studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Berne RM, Rubio R, Curnish RR (1974) Release of adenosine from ischemic brain: effect on cerebral vascular resistance and incorporation into cerebral adenine nucleotides. Circ Res 35(2):262–271

    Article  CAS  Google Scholar 

  2. Ilie A, Raimondo JV, Akerman CJ (2012) Adenosine release during seizures attenuates GABAA receptor-mediated depolarization. J Neurosci 32(15):5321–5332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pearson T, Damian K, Lynas RE, Frenguelli BG (2006) Sustained elevation of extracellular adenosine and activation of A1 receptors underlie the post-ischaemic inhibition of neuronal function in rat hippocampus in vitro. J Neurochem 97(5):1357–1368

    Article  CAS  PubMed  Google Scholar 

  4. Robertson CL, Bell MJ, Kochanek PM, Adelson PD, Ruppel RA, Carcillo JA, Wisniewski SR, Mi Z, Janesko KL, Clark RSB (2001) Increased adenosine in cerebrospinal fluid after severe traumatic brain injury in infants and children: association with severity of injury and excitotoxicity. Crit Care Med 29(12):2287–2293

    Article  CAS  PubMed  Google Scholar 

  5. Baldwin SA, Beal PR, Yao SYM, King AE, Cass CE, Young JD (2004) The equilibrative nucleoside transporter family, SLC29. Pflügers Arch 447(5):735–743

    Article  CAS  PubMed  Google Scholar 

  6. Pak MA, Haas HL, Decking UKM, Schrader J (1994) Inhibition of adenosine kinase increases endogenous adenosine and depresses neuronal activity in hippocampal slices. Neuropharmacology 33(9):1049–1053

    Article  CAS  PubMed  Google Scholar 

  7. Golembiowska K, White TD, Sawynok J (1996) Adenosine kinase inhibitors augment release of adenosine from spinal cord slices. Eur J Pharmacol 307(2):157–162

    Article  CAS  PubMed  Google Scholar 

  8. Liu XJ, White TD, Sawynok J (2000) Potentiation of formalin-evoked adenosine release by an adenosine kinase inhibitor and an adenosine deaminase inhibitor in the rat hind paw: a microdialysis study. Eur J Pharmacol 408(2):143–152

    Article  CAS  PubMed  Google Scholar 

  9. Davies LP, Jamieson DD, Baird-Lambert JA, Kazlauskas R (1984) Halogenated pyrrolopyrimidine analogues of adenosine from marine organisms: pharmacological activities and potent inhibition of adenosine kinase. Biochem Pharmacol 33(3):347–355

    Article  CAS  PubMed  Google Scholar 

  10. Arch JRS, Newsholme EA (1978) Activities and some properties of 5′-nucleotidase, adenosine kinase and adenosine deaminase in tissues from vertebrates and invertebrates in relation to the control of the concentration and the physiological role of adenosine. Biochem J 174(3):965–977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ugarkar BG, Castellino AJ, Da Re JM, Kopcho JJ, Wiesner JB, Schanzer JM, Erion MD (2003) Adenosine kinase inhibitors. 2. Synthesis, enzyme inhibition, and antiseizure activity of diaryltubercidin analogues. J Med Chem 43(15):2894–2905

    Article  Google Scholar 

  12. Firestein GS, Boyle D, Bullough DA, Gruber HE, Sajjadi FG, Montag A, Sambol B, Mullane KM (1994) Protective effect of an adenosine kinase inhibitor in septic shock. J Immunol 152(12):5853–5859

    CAS  PubMed  Google Scholar 

  13. Firestein GS, Bullough DA, Erion MD, Jimenez R, Ramirez-Weinhouse M, Barankiewicz J, Smith CW, Gruber HE, Mullane KM (1995) Inhibition of neutrophil adhesion by adenosine and an adenosine kinase inhibitor. The role of selectins. J Immunol 154(1):326–334

    CAS  PubMed  Google Scholar 

  14. Keil GJ II, DeLander GE (1994) Adenosine kinase and adenosine deaminase inhibition modulate spinal adenosine-and opioid agonist-induced antinociception in mice. Eur J Pharmacol 271(1):37–46

    Article  CAS  PubMed  Google Scholar 

  15. Sawynok J, Liu XJ (2003) Adenosine in the spinal cord and periphery: release and regulation of pain. Prog Neurobiol 69(5):313–340

    Article  CAS  PubMed  Google Scholar 

  16. Jarvis MF, Yu H, Kohlhaas K, Alexander K, Lee C-H, Jiang M, Bhagwat SS, Williams M, Kowaluk EA (2000) ABT-702 (4-amino-5-(3-bromophenyl)-7-(6-morpholinopyridin-3-yl) pyrido [2, 3-d] pyrimidine), a novel orally effective adenosine kinase inhibitor with analgesic and anti-inflammatory properties: I. In vitro characterization and acute antinociceptive effects in the mouse. J Pharmacol Exp Ther 295(3):1156–1164

    CAS  PubMed  Google Scholar 

  17. Ugarkar BG, DaRe JM, Kopcho JJ, Browne CE, Schanzer JM, Wiesner JB, Erion MD (2000) Adenosine kinase inhibitors. 1. Synthesis, enzyme inhibition, and antiseizure activity of 5-iodotubercidin analogues. J Med Chem 43(15):2883–2893

    Article  CAS  PubMed  Google Scholar 

  18. Wiesner JB, Ugarkar BG, Castellino AJ, Barankiewicz J, Dumas DP, Gruber HE, Foster AC, Erion MD (1999) Adenosine kinase inhibitors as a novel approach to anticonvulsant therapy. J Pharmacol Exp Ther 289(3):1669–1677

    CAS  PubMed  Google Scholar 

  19. McGaraughty S, Cowart M, Jarvis MF (2006) Recent developments in the discovery of novel adenosine kinase inhibitors: mechanism of action and therapeutic potential. CNS Drug Rev 7(4):415–432

    Article  Google Scholar 

  20. Boison D (2013) Adenosine kinase: exploitation for therapeutic gain. Pharmacol Rev 65(3):906–943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wotring LL, Townsend LB (1979) Study of the cytotoxicity and metabolism of 4-amino-3-carboxamido-1-(β-d-ribofuranosyl) pyrazolo [3, 4-d] pyrimidine using inhibitors of adenosine kinase and adenosine deaminase. Cancer Res 39(8):3018–3023

    CAS  PubMed  Google Scholar 

  22. Mitchell SS, Pomerantz SC, Concepción GP, Ireland CM (1996) Tubercidin analogs from the ascidian Didemnum voeltzkowi. J Nat Prod 59(10):1000–1001

    Article  CAS  PubMed  Google Scholar 

  23. Miller RL, Adamczyk DL, Miller WH, Koszalka GW, Rideout JL, Beacham LM, Chao EY, Haggerty JJ, Krenitsky TA, Elion GB (1979) Adenosine kinase from rabbit liver. II. Substrate and inhibitor specificity. J Biol Chem 254(7):2346–2352

    CAS  PubMed  Google Scholar 

  24. Gouder N, Scheurer L, Fritschy J-M, Boison D (2004) Overexpression of adenosine kinase in epileptic hippocampus contributes to epileptogenesis. J Neurosci 24(3):692–701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Aronica E, Zurolo E, Iyer A, de Groot M, Anink J, Carbonell C, van Vliet EA, Baayen JC, Boison D, Gorter JA (2011) Upregulation of adenosine kinase in astrocytes in experimental and human temporal lobe epilepsy. Epilepsia 52(9):1645–1655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Boison D (2008) The adenosine kinase hypothesis of epileptogenesis. Prog Neurobiol 84(3):249–262

    Article  CAS  PubMed  Google Scholar 

  27. Weichert JP, van Dort ME, Groziak MP, Counsell RE (1986) Radioiodination via isotope exchange in pivalic acid. Int J Radiat Appl Instrum Part A Appl Radiat Isot 37(8):907–913

    Article  CAS  Google Scholar 

  28. Lohith K, Kwon S, Padakanti P, Lieberman B, Sandau U, Boison D, Mach R, Farwell M (2017) Synthesis and initial characterization of [125I]-5-iodotubercidin, a radioligand for imaging adenosine kinase. J Nucl Med 58(supplement 1):866

    Google Scholar 

  29. Studer FE, Fedele DE, Marowsky A, Schwerdel C, Wernli K, Vogt K, Fritschy JM, Boison D (2006) Shift of adenosine kinase expression from neurons to astrocytes during postnatal development suggests dual functionality of the enzyme. Neuroscience 142(1):125–137

    Article  CAS  PubMed  Google Scholar 

  30. Phillips E, Newsholme EA (1979) Maximum activities, properties and distribution of 5′nucleotidase, adenosine kinase and adenosine deaminase in rat and human brain. J Neurochem 33(2):553–558

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Bier.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bier, D., Holschbach, M., Wedekind, F. et al. Preparation of 5-[131I]iodotubercidin for the detection of adenosine kinase. J Radioanal Nucl Chem 326, 1691–1697 (2020). https://doi.org/10.1007/s10967-020-07465-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07465-2

Keywords

Navigation