Skip to main content
Log in

Radon concentration and radiation exposure levels in workplace buildings of downtown Rio de Janeiro City, SE, Brazil

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Radon, a noble radioactive gas, can reach levels that pose a risk to public health in poorly ventilated environments such as residences and buildings. It is a known carcinogenic agent, responsible for the incidence of about 14% of lung cancer in the world. In this work an evaluation of indoor radon, that downtown Rio de Janeiro workers are exposed in working daily life was carried out using an alpha detector (RAD7). The indoor radon concentration and effective dose are below the limits recommended by international standards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bonotto DM (2004) Radioatividade nas águas: da Inglaterra ao Guarani. Ed. UNESP, São Paulo

    Google Scholar 

  2. NCRP (1998) Measurement of radon and radon daughter in air. New York. Report 97, NCRP Publications

  3. Bolus NE (2013) NCRP Report 160 and what it means for medical imaging and nuclear medicine. J Nucl Med Technol 41(4):255–260

    Article  Google Scholar 

  4. WHO, World Health Organization (2009) WHO Handbook on indoor radon: a public health perspective. World Health Organization, Geneva

    Google Scholar 

  5. Xie D, Liao M, Kearfott KJ (2015) Influence of environmental factors on indoor radon concentration levels in the basement and ground floor of a building—a case study. Radiat Meas 82:52–58. https://doi.org/10.1016/j.radmeas.2015.08.008

    Article  CAS  Google Scholar 

  6. EPA (2016) Consumer’s guide to radon reduction: how to fix your home. EPA 402/K-10/005

  7. Asher-Bolinder S, Owen DE, Schumann R (1991) In: Gundersen LCS, Wanty RB (eds) Field studies of radon in rocks, soils, and water. U.S. Geological Survey, Washington

    Google Scholar 

  8. García Talavera M, Matarranz JL, Gil R, García JP, Suárez E (2013) El mapa predictivo de exposición al radon en España. Madrid: Consejo de Seguridad Nuclear (CSN). Ref: INT-04.31

  9. EPA (2003) Assessment of risks from radon in homes. Washington: EPA 402-R-03-003

  10. INCA (2017) Estimativa 2018: Incidência de câncer no Brasil. INCA, Rio de Janeiro

    Google Scholar 

  11. Bray F, Ferlay J, Soerjomataraam I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: gLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. ACS J 68(6):394–424

    Google Scholar 

  12. Ferlay J, Ervik M, Lam F, Colombet M, Mery L, Piñeros M, Znaor A, Soerjomataram I, Bray F (2018) Cancer today. IARC CancerBase, n 15. https://publications.iarc.fr/Databases/Iarc-Cancerbases/Cancer-Today-Powered-By-GLOBOCAN-2018–2018. Accessed 14 July 2020

  13. INCA (2019) Estimativa 2020: Incidência de câncer no Brasil. INCA, Rio de Janeiro

    Google Scholar 

  14. INCA (2015) Estimativa 2016: Incidência de câncer no Brasil. Rio de Janeiro

  15. Neilson S, Robinson I, Rose FC (1996) Ecological correlates of motor neuron disease mortality: a hypothesis concerning an epidemiological association with radon gas and gamma exposure. J Neurol 243:329–336

    Article  CAS  Google Scholar 

  16. Momĉilović B, Alkhatib HA, Duerre JA, Cooley M, Long WM, Harris TR, Lykken GI (2001) Environmental Lead-210 and Bismuth-210 accrue selectively in the brain proteins in Alzheimer disease and brain lipids in Parkinson disease. Alzheimer Dis Assoc Disord 15(2):106–115

    Article  Google Scholar 

  17. Neuberger JS, Nazir N, Keighley J, Lynch S (2011) Residential radon exposure and multiple sclerosis: a pilot study. In: Meeting of the Health Physics Society, 65, West Palm Beach

  18. Groves-Kirkby CJ, Denman AR, Campbell J, Crockett RGM, Phillips PS, Rogers S (2016) Is environmental radon gas associated with the incidence of neurodegenerative conditions? A retrospective study of multiple sclerosis in radon affected areas in England and Wales. J Environ Radioact 154:1–14

    Article  CAS  Google Scholar 

  19. IBGE (2017) https://cidades.ibge.gov.br/. Accessed 9 Nov 2018

  20. CPRM (2001) Geologia do Estado do Rio de Janeiro: Texto explicativo do Mapa Geológico do Estado do Rio de Janeiro. MME, Brasília

    Google Scholar 

  21. INMET (2018) Dados Meteorológicos-Estação Automática A652. https://tempo.inmet.gov.br/TabelaEstacoes/A001. Accessed 9 Dec 2018

  22. Durridge (2016) RAD7 user’s manual. https://durridge.com/documentation/RAD7%20Manual.pdf. Accessed 27 July 2018

  23. UNSCEAR (2000) Sources, effects, and risks of ionizing radiation. United Nations, New York

    Google Scholar 

  24. ICRP (2017) Occupational Intakes of Radionuclides: Part 3. ICRP Publication 137, New York, 46(3–4)

  25. ICRP (2014) Radiological Protection against Radon Exposure. ICRP Publication 126, New York, 43(3)

  26. Geraldo LP, Dos Santos W, Marques AL, Botari A (2005) Medidas dos níveis de radônio em diferentes tipos de ambientes internos na região da Baixada Santista, SP. Radiol Bras. 38(4):283–286

    Article  Google Scholar 

  27. Wanty RB, Schoen R (1991) In: Gundersen LCS, Wanty RB (eds) Field studies of radon in rocks, soils, and water. U.S. Geological Survey, Washington

    Google Scholar 

  28. Marley F, Denman AR, Phillips PS (1998) Studies of radon and radon progeny in air conditioned rooms in hospitals. Radiat Prot Dosim 76(4):273–276

    Article  CAS  Google Scholar 

  29. Büyükuslu H, Özdemir FB, Öge TÖ, Gökce H (2018) Indoor and tap water radon (222Rn) concentration measurements at Giresun University campus areas. Appl Radiat Isot 139:285–291

    Article  Google Scholar 

  30. Silva CR, Caldeira PP, Nani ASF, Silva-Filho EV (2018) Radon levels in a hospital in Niterói Municipality-RJ, Brazil. J Braz Chem Soc 29(12):2580–2585

    CAS  Google Scholar 

  31. Yalim HA, Gümüş A, Ünal R (2018) Determination of indoor radon concentration and effective dose equivalent at workplaces of Afyonkarahisar Province. Süleyman Demirel Univ Fac Arts Sci J Sci 13(2):29–35. https://doi.org/10.29233/sdufeffd.442298

    Article  Google Scholar 

  32. Vaupotič J, Smrekar N, Žunić ZS (2017) Comparison of radon doses based on different radon monitoring approaches. J Environ Radioact 169–170:19–26

    Article  Google Scholar 

  33. Kozak K, Grzadziel D, Połednik B, Mazur J, Dudzińska MR, Mroczek M (2014) Air conditioning impact on the dynamics of radon and its daughters concentration. Radiat Prot Dosim 162(4):663–673

    Article  CAS  Google Scholar 

  34. Oni OM, Isola GA, Oladapo OO, Oni EA (2012) Estimation of lifetime fatality risk from indoor radon in some offices in a Nigerian University. Res J Environ Earth Sci 4(1):131–133

    CAS  Google Scholar 

  35. Rahmna SU, Rafique M, Matiullah Anwar J (2010) Radon measurement studies in workplace buildings of the Rawalpindi region and Islamabad Capital area, Pakistan. Build Environ 45:421–426

    Article  Google Scholar 

  36. Vaupotič J, Kobal I (2006) Effective dose in schools based on nanosize radon progeny aerosol. Atmos Environ 40:7474–7507

    Article  Google Scholar 

  37. Kullab M (2005) Assessment of radon-222 concentrations in buildings, building materials, water and soil in Jordan. Appl Radiat Isot 62:765–773

    Article  CAS  Google Scholar 

  38. Korhonen P, Halonen R, Kalliokoski P, Kokotti H (2001) Indoor radon concentrations caused by construction materials in 23 workplaces. Sci Total Environ 272:143–145

    Article  CAS  Google Scholar 

  39. Malanca A, Gaidolfi L (1997) Environmental radon in some Brazilian towns and mines. Radiat Prot Dosim 69(3):216–221

    Article  Google Scholar 

Download references

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001. Silva-Filho is a senior researcher of the National Council for Research and Development (CNPq 311847/2019-6) and the Foundation for Research Support of the State of Rio de Janeiro (FAPERJ E-26/203.037/2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camila Rodrigues e Silva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

e Silva, C.R., Silva-Filho, E.V. Radon concentration and radiation exposure levels in workplace buildings of downtown Rio de Janeiro City, SE, Brazil. J Radioanal Nucl Chem 326, 1709–1717 (2020). https://doi.org/10.1007/s10967-020-07463-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07463-4

Keywords

Navigation