Skip to main content
Log in

Preparation and assessment of magnetic graphene oxide/chitosan composite for removing radiocobalt from aqueous solution

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A novel adsorbent of magnetic graphene oxide/chitosan (MGOC) composite has been prepared via chemical cross-linking method, and exhibits an extraordinary sorption capacity (about 59.82 mg/g) towards cobalt ions. The batch experiments revealed that MGOC is weakly affected by ionic strength and pH-dependent for cobalt ions sorption. The sorption process is spontaneous and endothermic according to thermodynamic parameters, following the pseudo-second-order model. In view of low price, high adsorption capacity, great saturation magnetization and perfect reusability, the MGOC composite maybe has a potential value in treatment of radiocobalt-containing wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Lee XJ, Hiew BYZ, Lai KC, Lee LY, Gan S, Thangalazhy-Gopakumar S, Rigby S (2019) Review on graphene and its derivatives: synthesis methods and potential industrial implementation. J Taiwan Inst Chem Eng 98:163–180

    CAS  Google Scholar 

  2. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22(35):3906–3924

    CAS  PubMed  Google Scholar 

  3. Kuila T, Bose S, Mishra AK, Khanra P, Kim NH, Lee JH (2012) Chemical functionalization of graphene and its applications. Prog Mater Sci 57(7):1061–1105

    CAS  Google Scholar 

  4. Smith SC, Rodrigues DF (2015) Carbon-based nanomaterials for removal of chemical and biological contaminants from water: a review of mechanisms and applications. Carbon 91:122–143

    CAS  Google Scholar 

  5. Weng X, Wu J, Ma L, Owens G, Chen Z (2019) Impact of synthesis conditions on Pb(II) removal efficiency from aqueous solution by green tea extract reduced graphene oxide. Chem Eng J 359:976–981

    CAS  Google Scholar 

  6. Fu W, Huang Z (2018) Magnetic dithiocarbamate functionalized reduced graphene oxide for the removal of Cu(II), Cd(II), Pb(II), and Hg(II) ions from aqueous solution: synthesis, adsorption, and regeneration. Chemosphere 209:449–456

    CAS  PubMed  Google Scholar 

  7. Kuzenkova AS, Romanchuk AY, Trigub AL, Maslakov KI, Egorov AV, Amidani L, Kittrell C, Kvashnina KO, Tour JM, Talyzin AV, Kalmykov SN (2020) New insights into the mechanism of graphene oxide and radionuclide interaction. Carbon 158:291–302

    CAS  Google Scholar 

  8. Georgakilas V, Tiwari JN, Kemp KC, Perman JA, Bourlinos AB, Kim KS, Zboril R (2016) Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chem Rev 116(9):5464–5519

    CAS  PubMed  Google Scholar 

  9. Majumder S, Sardar M, Satpati B, Kumar S, Banerjee S (2018) Magnetization enhancement of Fe3O4 by attaching onto graphene oxide: an interfacial effect. J Phys Chem C 122(37):21356–21365

    CAS  Google Scholar 

  10. Choi D-w, Park H, Lim JH, Han TH, Park J-S (2017) Three-dimensionally stacked Al2O3/graphene oxide for gas barrier applications. Carbon 125:464–471

    CAS  Google Scholar 

  11. Khan SA, Arshad Z, Shahid S, Arshad I, Rizwan K, Sher M, Fatima U (2019) Synthesis of TiO2/Graphene oxide nanocomposites for their enhanced photocatalytic activity against methylene blue dye and ciprofloxacin. Compos B Eng 175:107120

    CAS  Google Scholar 

  12. Ain QU, Farooq MU, Jalees MI (2020) Application of magnetic graphene oxide for water purification: heavy metals removal and disinfection. J Water Process Eng 33:101044

    Google Scholar 

  13. Liu Y, Huang H, Gan D, Guo L, Liu M, Chen J, Deng F, Zhou N, Zhang X, Wei Y (2018) A facile strategy for preparation of magnetic graphene oxide composites and their potential for environmental adsorption. Ceram Int 44(15):18571–18577

    CAS  Google Scholar 

  14. Lujanienė G, Šemčuk S, Lečinskytė A, Kulakauskaitė I, Mažeika K, Valiulis D, Pakštas V, Skapas M, Tumėnas S (2017) Magnetic graphene oxide based nano-composites for removal of radionuclides and metals from contaminated solutions. J Environ Radioact 166:166–174

    PubMed  Google Scholar 

  15. Li Q, Fan F, Wang Y, Feng W, Ji P (2013) Enzyme immobilization on carboxyl-functionalized graphene oxide for catalysis in organic solvent. Ind Eng Chem Res 52(19):6343–6348

    CAS  Google Scholar 

  16. Perreault F, Fonseca de Faria A, Elimelech M (2015) Environmental applications of graphene-based nanomaterials. Chem Soc Rev 44(16):5861–5896

    CAS  PubMed  Google Scholar 

  17. Padala AN, Bhaskarapillai A, Velmurugan S, Narasimhan SV (2011) Sorption behaviour of Co(II) and Cu(II) on chitosan in presence of nitrilotriacetic acid. J Hazard Mater 191(1):110–117

    CAS  PubMed  Google Scholar 

  18. Liu L, Li C, Bao C, Jia Q, Xiao P, Liu X, Zhang Q (2012) Preparation and characterization of chitosan/graphene oxide composites for the adsorption of Au(III) and Pd(II). Talanta 93:350–357

    CAS  PubMed  Google Scholar 

  19. Izah SC, Chakrabarty N, Srivastav AL (2016) A review on heavy metal concentration in potable water sources in Nigeria: human health effects and mitigating measures. Expo Health 8(2):285–304

    CAS  Google Scholar 

  20. Zhao X, Luo Y, He C, Zong P, Zhang K, Kebwaro JM, Li K, Fu B, Zhao Y (2015) Evaluation of permutite for removal of radiocobalt from nuclear wastewater. J Radioanal Nucl Chem 303(1):837–844

    CAS  Google Scholar 

  21. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339–1339

    CAS  Google Scholar 

  22. Liang Y, Zhang L (2007) Bioconjugation of papain on superparamagnetic nanoparticles decorated with carboxymethylated chitosan. Biomacromol 8(5):1480–1486

    CAS  Google Scholar 

  23. Solomons TWG (1980) Organic chemical. Wiley, New York

    Google Scholar 

  24. Tirkistani FAA (1998) Thermal analysis of some chitosan Schiff bases. Polym Degrad Stab 60(1):67–70

    CAS  Google Scholar 

  25. Magalhães JMCS, Machado AASC (1998) Urea potentiometric biosensor based on urease immobilized on chitosan membranes. Talanta 47(1):183–191

    PubMed  Google Scholar 

  26. Ai L, Zhang C, Chen Z (2011) Removal of methylene blue from aqueous solution by a solvothermal-synthesized graphene/magnetite composite. J Hazard Mater 192(3):1515–1524

    CAS  PubMed  Google Scholar 

  27. El Ghandoor H, Zidan HM, Khalil MMH, Ismail MIM (2012) Synthesis and some physical properties of magnetite (Fe3O4) nanoparticles. Int J Electrochem Sci 7(6):5734–5745

    Google Scholar 

  28. Lagergren S (1898) About the theory of so-called adsorption of solution substances. Handlinger 24:1–39

    Google Scholar 

  29. Ho YS (2006) Review of second-order models for adsorption systems. J Hazard Mater 136(3):681–689

    CAS  PubMed  Google Scholar 

  30. Şenol ZM, Gürsoy N, Şimşek S, Özer A, Karakuş N (2020) Removal of food dyes from aqueous solution by chitosan-vermiculite beads. Int J Biol Macromol 148:635–646

    PubMed  Google Scholar 

  31. Li K, Hu J, Liu Z, Chen L, Dong Y (2013) Sorption of radiocobalt(II) onto MWCNTs: effects of solid content, contact time, pH, ionic strength, humic acid and temperature. J Radioanal Nucl Chem 295(3):2125–2133

    CAS  Google Scholar 

  32. Ding J, Sha H, Zhao S, Liu X (2016) Synthesis of graphene oxide/magnetite chitosan composite and adsorption performance for sulfadiazine. Acta Sci Circum 36(10):3691–3700

    CAS  Google Scholar 

  33. Yüzer H, Kara M, Sabah E, Çelik MS (2008) Contribution of cobalt ion precipitation to adsorption in ion exchange dominant systems. J Hazard Mater 151(1):33–37

    PubMed  Google Scholar 

  34. Wang H, Zhang P, Ma X, Jiang S, Huang Y, Zhai L, Jiang S (2014) Preparation, characterization of electrospun meso-hydroxylapatite nanofibers and their sorptions on Co(II). J Hazard Mater 265:158–165

    CAS  PubMed  Google Scholar 

  35. Langmuir I (1916) The constitution and fundamental properties of solids and liquids part I solids. J Am Chem Soc 38(11):2221–2295

    CAS  Google Scholar 

  36. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, micra and platinum. J Am Chem Soc 40(9):1361–1403

    CAS  Google Scholar 

  37. Nassar MM, Ewida KT, Ebrahiem EE, Magdy YH, Mheaedi MH (2004) Adsorption of iron and manganese ions using low-cost materials as adsorbents. Adsorpt Sci Technol 22(1):25–37

    CAS  Google Scholar 

  38. Şimşek S, Şenol ZM, Ulusoy Hİ (2017) Synthesis and characterization of a composite polymeric material including chelating agent for adsorption of uranyl ions. J Hazard Mater 338:437–446

    PubMed  Google Scholar 

  39. Yang S, Li J, Shao D, Hu J, Wang X (2009) Adsorption of Ni(II) on oxidized multi-walled carbon nanotubes: effect of contact time, pH, foreign ions and PAA. J Hazard Mater 166(1):109–116

    CAS  PubMed  Google Scholar 

  40. Tahir SS, Rauf N (2003) Thermodynamic studies of Ni(II) adsorption onto bentonite from aqueous solution. J Chem Thermodyn 35(12):2003–2009

    CAS  Google Scholar 

  41. Qadeer R, Hanif J, Saleem M, Afzal M (1993) Surface characterization and thermodynamics of adsorption of Sr2+, Ce3+, Sm3+, Gd3+, Th4+, UO22+on activated charcoal from aqueous solution. Colloid Polym Sci 271(1):83–90

    CAS  Google Scholar 

  42. Zhuang ST, Yin YN, Wang JL (2018) Simultaneous detection and removal of cobalt ions from aqueous solution by modified chitosan beads. Int J Environ Sci Technol 15(2):385–394

    CAS  Google Scholar 

  43. Omar H, Arida H, Daifullah A (2009) Adsorption of 60Co radionuclides from aqueous solution by raw and modified bentonite. Appl Clay Sci 44(1):21–26

    CAS  Google Scholar 

  44. Tayyebi A, Outokesh M, Moradi S, Doram A (2015) Synthesis and characterization of ultrasound assisted “graphene oxide–magnetite” hybrid, and investigation of its adsorption properties for Sr(II) and Co(II) ions. Appl Surf Sci 353:350–362

    CAS  Google Scholar 

  45. Wang X, Liu Y, Pang H, Yu S, Ai Y, Ma X, Song G, Hayat T, Alsaedi A, Wang X (2018) Effect of graphene oxide surface modification on the elimination of Co(II) from aqueous solutions. Chem Eng J 344:380–390

    CAS  Google Scholar 

  46. Fang F, Kong L, Huang J, Wu S, Zhang K, Wang X, Sun B, Jin Z, Wang J, Huang X-J, Liu J (2014) Removal of cobalt ions from aqueous solution by an amination graphene oxide nanocomposite. J Hazard Mater 270:1–10

    CAS  PubMed  Google Scholar 

  47. Deng J, Zhao Y, Tong D, Yang L (2019) Synthesis of magnetic graphene oxide for removal of Co(II)from aqueous solution. J Nucl Radiochem 41(3):283–289

    Google Scholar 

  48. Zhao Y, Zhao X, Deng J, He C (2016) Utilization of chitosan–clinoptilolite composite for the removal of radiocobalt from aqueous solution: kinetics and thermodynamics. J Radioanal Nucl Chem 308(2):701–709

    CAS  Google Scholar 

Download references

Acknowledgements

We thank the financial supports by National Natural Science Foundation of China (Grant Nos. 11775168 and 11275147) and Innovative Scientific Program of CNNC.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yinggen Ouyang or Jia Deng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouyang, Y., Deng, J., Chen, Z. et al. Preparation and assessment of magnetic graphene oxide/chitosan composite for removing radiocobalt from aqueous solution. J Radioanal Nucl Chem 326, 1699–1708 (2020). https://doi.org/10.1007/s10967-020-07462-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07462-5

Keywords

Navigation