Skip to main content
Log in

Gas-sculpted g-C3N4 for efficient photocatalytic reduction of U(VI)

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Photocatalytic reduction of soluble U(VI) into insoluble U(IV) with g-C3N4 is considered to be an effective strategy to remove uranium from waste water. However, the traditional g-C3N4 suffers from the defects of low specific surface area and serious recombination rate of photo-induced electrons and holes. In this work, a sample strategy of synthesize porous g-C3N4 was obtained by sculpturing with HCl which was derived from NH4Cl. Furthermore, with the method of gas-sculpturing exhibit higher photocatalytic performance, which is 4.8 times higher than that of bulk g-C3N4. The method of gas-sculpturing suggests a new and promising candidate for constructing effective photocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Scheme 1

Similar content being viewed by others

References

  1. Liu Y-H, Wang Y-Q, Zhang Z-B, Cao X-H, Nie W-B, Li Q, Hua R (2013) Removal of uranium from aqueous solution by a low cost and high-efficient adsorbent. Appl Surf Sci 273:68–74. https://doi.org/10.1016/j.apsusc.2013.01.182

    Article  CAS  Google Scholar 

  2. Anirudhan T, Radhakrishnan P (2009) Improved performance of a biomaterial-based cation exchanger for the adsorption of uranium(VI) from water and nuclear industry wastewater. J Environ Radioact 100(3):250–257. https://doi.org/10.1016/j.jenvrad.2008.12.006

    Article  CAS  PubMed  Google Scholar 

  3. Liu Y, Li Q, Cao X, Wang Y, Jiang X, Li M, Hua M, Zhang Z (2013) Removal of uranium(VI) from aqueous solutions by CMK-3 and its polymer composite. Appl Surf Sci 285:258–266. https://doi.org/10.1016/j.apsusc.2013.08.048

    Article  CAS  Google Scholar 

  4. Kim YK, Lee S, Ryu J, Park H (2015) Solar conversion of seawater uranium(VI) using TiO2 electrodes. Appl Catal B Environ 163:584–590. https://doi.org/10.1016/j.apcatb.2014.08.041

    Article  CAS  Google Scholar 

  5. Bayyari M, Nazal M, Khalili F (2010) The effect of ionic strength on the extraction of thorium(IV) from nitrate solution by didodecylphosphoric acid (HDDPA). J Saudi Chem Soc 14(3):311–315. https://doi.org/10.1016/j.arabjc.2010.02.007

    Article  CAS  Google Scholar 

  6. Bonato M, Allen G, Scott T (2008) Reduction of U(VI) to U(IV) on the surface of TiO2 anatase nanotubes. Micro Nano Lett 3(2):57–61. https://doi.org/10.1049/mnl:20080007

    Article  CAS  Google Scholar 

  7. Zou Y, Wang P, Yao W, Wang X, Liu Y, Yang D, Wang L, Hou J, Alsaedi A, Hayat T (2017) Synergistic immobilization of UO22+ by novel graphitic carbon nitride@ layered double hydroxide nanocomposites from wastewater. Chem Eng J 330:573–584. https://doi.org/10.1016/j.cej.2017.07.135

    Article  CAS  Google Scholar 

  8. Li P, Wang J, Wang Y, Liang J, Pan D, Qiang S, Fan Q (2019) An overview and recent progress in the heterogeneous photocatalytic reduction of U(VI). J Photochem Photobiol, C 41:100320. https://doi.org/10.1016/j.jphotochemrev.2019.100320

    Article  CAS  Google Scholar 

  9. Ong W-J, Tan L-L, Ng YH, Yong S-T, Chai S-P (2016) Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem Rev 116(12):7159–7329. https://doi.org/10.1021/acs.chemrev.6b00075

    Article  CAS  PubMed  Google Scholar 

  10. He R, Zhou J, Fu H, Zhang S, Jiang C (2018) Room-temperature in situ fabrication of Bi2O3/g-C3N4 direct Z-scheme photocatalyst with enhanced photocatalytic activity. Appl Surf Sci 430:273–282. https://doi.org/10.1016/j.apsusc.2017.07.191

    Article  CAS  Google Scholar 

  11. Zou W, Xu L, Pu Y, Cai H, Wei X, Luo Y, Li L, Gao B, Wan H, Dong L (2019) Advantageous interfacial effects of AgPd/g-C3N4 for photocatalytic hydrogen evolution: electronic structure and H2O dissociation. Appl Catal B Environ 25(19):5058–5064. https://doi.org/10.1016/j.apcatb.2018.08.056

    Article  CAS  Google Scholar 

  12. Wu H-Z, Bandaru S, Liu J, Li L-L, Wang Z (2018) Adsorption of H2O, H2, O2, CO, NO, and CO2 on graphene/g-C3N4 nanocomposite investigated by density functional theory. Appl Surf Sci 430:125–136. https://doi.org/10.1016/j.apsusc.2017.06.073

    Article  CAS  Google Scholar 

  13. Wang J, Luo Z, Song Y, Zheng X, Qu L, Qian J, Wu Y, Wu X, Wu Z (2019) Remediation of phenanthrene contaminated soil by g-C3N4/Fe3O4 composites and its phytotoxicity evaluation. Chemosphere 221:554–562. https://doi.org/10.1016/j.chemosphere.2019.01.078

    Article  CAS  PubMed  Google Scholar 

  14. Li S, Dong G, Hailili R, Yang L, Li Y, Wang F, Zeng Y, Wang C (2016) Effective photocatalytic H2O2 production under visible light irradiation at g-C3N4 modulated by carbon vacancies. Appl Catal B Environ 190:26–35. https://doi.org/10.1016/j.apcatb.2016.03.004

    Article  CAS  Google Scholar 

  15. Lu C, Chen R, Wu X, Fan M, Liu Y, Le Z, Jiang S, Song S (2016) Boron doped g-C3N4 with enhanced photocatalytic UO22+ reduction performance. Appl Surf Sci 360:1016–1022. https://doi.org/10.1016/j.apsusc.2015.11.112

    Article  CAS  Google Scholar 

  16. Zhang Y, Wu L, Zhao X, Zhao Y, Tan H, Zhao X, Ma Y, Zhao Z, Song S, Wang Y (2018) Leaf-mosaic-inspired vine-like graphitic carbon nitride showing high light absorption and efficient photocatalytic hydrogen evolution. Adv Energy Mater 8(25):1801139. https://doi.org/10.1002/aenm.201801139

    Article  CAS  Google Scholar 

  17. Luo B, Song R, Jing D (2018) Significantly enhanced photocatalytic hydrogen generation over graphitic carbon nitride with carefully modified intralayer structures. Chem Eng J 332:499–507. https://doi.org/10.1016/j.cej.2017.09.119

    Article  CAS  Google Scholar 

  18. Sun J, Zhang J, Zhang M, Antonietti M, Fu X, Wang X (2012) Bioinspired hollow semiconductor nanospheres as photosynthetic nanoparticles. Nature 3:1–7. https://doi.org/10.1038/ncomms2152

    Article  CAS  Google Scholar 

  19. Wang MZY, Dong G, Wang C (2020) Br-doping of g-C3N4 towards enhanced photocatalytic performance in Cr(VI) reduction. Chin J Catal 41(10):1498–1510. https://doi.org/10.1016/S1872-2067(19)63435-2

    Article  CAS  Google Scholar 

  20. Zhang GZM, Ye X, Qiu X, Sen Lin, Wang X (2014) Iodine modified carbon nitride semiconductors as visible light photocatalysts for hydrogen evolution. Adv Mater 26(5):805–809. https://doi.org/10.1002/adma.201303611

    Article  CAS  PubMed  Google Scholar 

  21. Li K, Xie X, Zhang WD (2016) Porous graphitic carbon nitride derived from melamine–ammonium oxalate stacking sheets with excellent photocatalytic hydrogen evolution activity. Chem Cat Chem 8(12):2128–2135. https://doi.org/10.1002/cctc.201600272

    Article  CAS  Google Scholar 

  22. Jiang X-H, Xing Q-J, Luo X-B, Li F, Zou J-P, Liu S-S, Li X, Wang X-K (2018) Simultaneous photoreduction of uranium(VI) and photooxidation of arsenic(III) in aqueous solution over g-C3N4/TiO2 heterostructured catalysts under simulated sunlight irradiation. Appl Catal B Environ 228:29–38. https://doi.org/10.1016/j.apcatb.2018.01.062

    Article  CAS  Google Scholar 

  23. Wang J, Wang Y, Wang W, Ding Z, Geng R, Li P, Pan D, Liang J, Qin H, Fan Q (2019) Tunable mesoporous g-C3N4 nanosheets as a metal-free catalyst for enhanced visible-light-driven photocatalytic reduction of U(VI). Chem Eng J 383:123193. https://doi.org/10.1016/j.cej.2019.123193

    Article  CAS  Google Scholar 

  24. Wang F, Wang Y, Feng Y, Zeng Y, Xie Z, Zhang Q, Su Y, Chen P, Liu Y, Yao K (2018) Novel ternary photocatalyst of single atom-dispersed silver and carbon quantum dots co-loaded with ultrathin g-C3N4 for broad spectrum photocatalytic degradation of naproxen. Appl Catal B Environ 221:510–520. https://doi.org/10.1016/j.apcatb.2017.09.055

    Article  CAS  Google Scholar 

  25. Kumar S, Karthikeyan S, Lee AF (2018) g-C3N4-based nanomaterials for visible light-driven photocatalysis. Catalysts 8(2):74. https://doi.org/10.3390/catal8020074

    Article  CAS  Google Scholar 

  26. Gong J, Xie Z, Xiong C, Liu C, Li Z, Le Z (2019) Efficient photocatalytic removal of U(VI) over π-electron-incorporated g-C3N4 under visible light irradiation. J Radioanal Nucl Chem 322(2):1115–1125. https://doi.org/10.1007/s10967-019-06817-x

    Article  CAS  Google Scholar 

  27. Liu Q, Shen J, Yu X, Yang X, Liu W, Yang J, Tang H, Xu H, Li H, Li Y (2019) Unveiling the origin of boosted photocatalytic hydrogen evolution in simultaneously (S, P, O)-codoped and exfoliated ultrathin g-C3N4 nanosheets. Appl Catal B Environ 248:84–94. https://doi.org/10.1016/j.apcatb.2019.02.020

    Article  CAS  Google Scholar 

  28. Wang K, Li Q, Liu B, Cheng B, Ho W, Yu J (2015) Sulfur-doped g-C3N4 with enhanced photocatalytic CO2-reduction performance. Appl Catal B Environ 176:44–52. https://doi.org/10.1016/j.apcatb.2015.03.045

    Article  CAS  Google Scholar 

  29. Guo Q, Xie Y, Wang X, Zhang S, Hou T, Lv S (2004) Synthesis of carbon nitride nanotubes with the g-C3N4 stoichiometry via a benzene-thermal process at low temperatures. Chem Commun 1:26–27. https://doi.org/10.1039/B311390F

    Article  Google Scholar 

  30. Lu C, Zhang P, Jiang S, Wu X, Song S, Zhu M, Lou Z, Li Z, Liu F, Liu Y (2017) Photocatalytic reduction elimination of UO22+ pollutant under visible light with metal-free sulfur doped g-C3N4 photocatalyst. Appl Catal B Environ 200:378–385. https://doi.org/10.1016/j.apcatb.2016.07.036

    Article  CAS  Google Scholar 

  31. Xu H, Yan J, She X, Xu L, Xia J, Xu Y, Song Y, Huang L, Li H (2014) Graphene-analogue carbon nitride: novel exfoliation synthesis and its application in photocatalysis and photoelectrochemical selective detection of trace amount of Cu2+. Nanoscale 6(3):1406–1415. https://doi.org/10.1039/C3NR04759H

    Article  PubMed  Google Scholar 

  32. Tang J-Y, Kong XY, Ng B-J, Chew Y-H, Mohamed AR, Chai S-P (2019) Midgap-state-mediated two-step photoexcitation in nitrogen defect-modified g-C3N4 atomic layers for superior photocatalytic CO2 reduction. Catal Sci Technol 9(9):2335–2343. https://doi.org/10.1039/C9CY00449A

    Article  CAS  Google Scholar 

  33. Li P, Wang J, Wang Y, Liang J, He B, Pan D, Fan Q, Wang X (2019) Photoconversion of U(VI) by TiO2: an efficient strategy for seawater uranium extraction. Chem Eng J 365:231–241. https://doi.org/10.1016/j.cej.2019.02.013

    Article  CAS  Google Scholar 

  34. Bachmann H-G, Dokuzoguz H, Muller H (1974) Preparation, characterization and X-ray powder diffraction data of the compound UO4. 2NH3. 2HF. J Inorg Nucl Chem 36(4):795–798. https://doi.org/10.1016/0022-1902(74)80814-6

    Article  CAS  Google Scholar 

  35. Debets P (1963) X-ray diffraction data on hydrated uranium peroxide. J Inorg Nucl Chem 25(6):727–730. https://doi.org/10.1016/0022-1902(63)80165-7

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the National Natural Science Foundation of China (Nos. 11765002, 21966003), the National Natural Science Foundation of Jiangxi (No. 20181BAB203019) and Resaerch Foundation for Advanced Talents (No. 2400100185) for financial support. We also appreciate the instrumentation for the experimental testing provided by other research groups in the East China University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zongbo Xie, Bo Wang or Zhanggao Le.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 528 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Xie, Z., Wang, B. et al. Gas-sculpted g-C3N4 for efficient photocatalytic reduction of U(VI). J Radioanal Nucl Chem 326, 1805–1817 (2020). https://doi.org/10.1007/s10967-020-07458-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07458-1

Keywords

Navigation