Skip to main content
Log in

Removal of uranyl ions from aqueous media by tannic acid-chitosan hydrothermal carbon: equilibria, kinetics and thermodynamics

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The tannic acid-chitosan hydrothermal carbon (TCHC) by hydrothermal carbonization is first used in uranium(VI) adsorption. The characterization of HCTC was investigated by scanning electron microscopy, X-ray diffraction, infrared spectroscopy (FTIR). The effects of pH, adsorbent dosage, initial U(VI) concentration, temperature and contact time on the adsorption of uranium(VI) were expressed in batch experiments. A maximum adsorption capacity 96.99 mg/g has been achieved at pH = 5.5, T = 25 °C and initial concentration of U(VI) solution 80 mg/L. The adsorption data fit well with the Langmuir model and pseudo second order kinetics model, indicating that uranium(VI) was monolayer covered on the surface of the material, and the adsorption process was mainly chemisorption. Thermodynamic data indicates that the immobilization of uranium(VI) to the material surface was spontaneous and endothermic. TCHC in low-cost is a promising adsorbent for uranium(VI) adsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Wei YQ, Zhang LX, Shen L, Hua DB (2016) Positively charged phosphonate-functionalized mesoporous silica for efficient uranium sorption from aqueous solution. J Mol Liq 221:1231–1236

    CAS  Google Scholar 

  2. Song WC, Liu MC, Hu R, Tan XL, Li JX (2014) Water-soluble polyacrylamide coated-Fe3O4 magnetic composites for high efficient enrichment of U(VI) from radioactive wastewater. Chem Eng J 246:268–276

    CAS  Google Scholar 

  3. Selçuk Ş (2016) Adsorption properties of lignin containing bentonite–polyacrylamide composite for ions. Desalin Water Treat 57:23790–23799

    Google Scholar 

  4. Liu DQ, Liu ZR, Wang CF, Lai Y (2016) Removal of uranium(VI) from aqueous solution using nanoscale zero-valent iron supported on activated charcoal. J Radioanal Nucl Chem 310(3):1131–1137

    CAS  Google Scholar 

  5. Zeynep MŞ, Selçuk Ş, Halil İU, Ayyaz M, Savaş K (2020) Insight from adsorption properties of Xylidyl Blue embedded hydrogel for effective removal of uranyl: experimental and theoretical approaches. Poly Test. 88:106566

    Google Scholar 

  6. Negm SH, Abd El-Hamid AAM, Gado MA, El-Gendy HS (2019) Selective uranium adsorption using modified acrylamide resins. J Radioanal Nucl Chem 319(1):327–337

    CAS  Google Scholar 

  7. Xiu TY, Liu ZR, Wang Y, Wu P, Du Y, Cai ZW (2019) Thorium adsorption on graphene oxide nanoribbons/manganese dioxide composite material. J Radioanal Nucl Chem 319(3):1059–1067

    CAS  Google Scholar 

  8. Zeynep MŞ, Simek S, Halil İU, Ali Ö (2020) Synthesis and characterization of a polyacrylamide-dolomite based new composite material for efficient removal of uranyl ions. J Radioanal Nucl Chem 324:317–330

    Google Scholar 

  9. Selçuk Ş, Zeynep MŞ, Halil İU (2017) Synthesis and characterization of a composite polymeric material including chelating agent for adsorption of uranyl ions. J Hazard Mater 338:437–446

    Google Scholar 

  10. Zarrougui R, Mdimagh R, Raouaf N (2018) Highly efficient extraction and selective separation of uranium(VI) from transition metals using new class of undiluted ionic liquids based on H-phosphonate anions. J Hazard Mater 342:464–476

    CAS  PubMed  Google Scholar 

  11. Gavrilescu M, Pavel LV, Cretescu I (2009) Characterization and remediation of soils contaminated with uranium. J Hazard Mater 163(2–3):475–510

    CAS  PubMed  Google Scholar 

  12. Ülküye DG, Zeynep MŞ, Nevcihan G, Selçuk Ş (2019) Effective UO22+ removal from aqueous solutions using lichen biomass as a natural and low-cost biosorbent. J Environ Radio 205:93–100

    Google Scholar 

  13. Huang JY, Wu ZW, Chen LW, Sun YB (2015) The sorption of Cd (II) and U(VI) on sepiolite: a combined experimental and modeling studies. J Mol Liq 209:706–712

    CAS  Google Scholar 

  14. Chakraborty S, Favre Banerjee D, Scheinost AC, Mullet M, Ehrhardt JJ, Brendle J, Vidal L, Charlet L (2010) U(VI) sorption and reduction by Fe(II) sorbed on montmorillonite. Environ Sci Technol 44(10):3779–3785

    CAS  PubMed  Google Scholar 

  15. Anirudhan TS, Radhakrishnan PG (2009) Kinetics, thermodynamics and surface heterogeneity assessment of uranium(VI) adsorption onto cation exchange resin derived from a lignocellulosic residue. Appl Surf Sci 255(9):4983–4991

    CAS  Google Scholar 

  16. Abdulkader MA, Rushdi S, Mustafa AK (2008) Uranium and potentially toxic metals during the mining, beneficiation, and processing of phosphorite and their effects on ground water in Jordan. Mine Water Environ 27(3):171

    Google Scholar 

  17. Deb AKS, Ilaiyaraja P, Ponraju D, Venkatraman B (2012) Diglycolamide functionalized multi-walled carbon nanotubes for removal of uranium from aqueous solution by adsorption. J Radioanal Nucl Chem 291(3):877–883

    CAS  Google Scholar 

  18. Zeynep MŞ, Dilek ŞA, Selçuk Ş (2019) Preparation and characterization of a novel diatomite-based composite and investigation of its adsorption properties for uranyl ions. J Radio Nucl Chem 321(3):791–803

    Google Scholar 

  19. Korichi S, Bensmaili A (2009) Sorption of uranium(VI) on homoionic sodium smectite experimental study and surface complexation modeling. J Hazard Mater 169(1–3):780–793

    CAS  PubMed  Google Scholar 

  20. Jin HK, Lee HI, Yeon JW, Jung Y, Ji MK (2010) Removal of uranium(VI) from aqueous solutions by nanoporous carbon and its chelating polymer composite. J Radioanal Nucl Chem 286(1):129–133

    Google Scholar 

  21. Gao Y, Shao Z, Xiao Z (2015) U(VI) sorption on illite: effect of pH, ionic strength, humic acid and temperature. J Radioanal Nucl Chem 303(1):867–876

    CAS  Google Scholar 

  22. Zhou LM, Zou HB, Wang Y, Huang ZW, Luo T, Liu ZR, Adesoji AA (2016) Adsorption of uranium(VI) from aqueous solution using magnetic carboxymethyl chitosan nano-particles functionalized with ethylenediamine. J Radioanal Nucl Chem 308(3):935–946

    CAS  Google Scholar 

  23. Salih SS, Ghosh TK (2018) Adsorption of Zn(II) ions by chitosan coated diatomaceous earth. Int J Biol Macromol 106:602–610

    CAS  PubMed  Google Scholar 

  24. Zhou LM, Shang C, Liu ZR, Huang GL, Adesoji AA (2012) Selective adsorption of uranium(VI) from aqueous solutions using the ion-imprinted magnetic chitosan resins. J Colloid Interface Sci 366(1):165–172

    CAS  PubMed  Google Scholar 

  25. Gurung M, Adhikari BB, Alam S, Kawakita H, Ohto K, Inoue K (2013) Adsorptive removal of Cs(I) from aqueous solution using polyphenols enriched biomass-based adsorbents. Chem Eng J 231:113–120

    CAS  Google Scholar 

  26. Zeynep MŞ, Nevcihan G, Selçuk Ş, Ali Ö, Nihat K (2020) Removal of food dyes from aqueous solution by chitosan-vermiculite beads. Int J Biol Macromol 148:635–646

    Google Scholar 

  27. Zeynep MŞ, Selçuk Ş (2020) Removal of Pb2+ ions from aqueous medium by using chitosan-diatomite composite: equilibrium, kinetic and thermodynamic studies. J Tur Chem Soc. Sect. A: Chem. 7(1):307–318

    Google Scholar 

  28. Liu YH, Cao XH, Le ZG, Luo MB, Xu WY, Huang GL (2010) Pre-concentration and determination of trace uranium(VI) in environments using ion-imprinted chitosan resin via solid phase extraction. J Braz Chem Soc 21(3):533–540

    CAS  Google Scholar 

  29. Zhu K, Chen C, Xu M, Chen K, Tan X, Wakeel M, Alharbi NS (2018) In situ carbothermal reduction synthesis of Fe nanocrystals embedded into N-doped carbon nanospheres for highly efficient U(VI) adsorption and reduction. Chem Eng J 331:395–405

    CAS  Google Scholar 

  30. Sun X, Huang X, Liao XP, Shi B (2010) Adsorptive recovery of UO22+ from aqueous solutions using collagen-tannin resin. J Hazard Mater 179(1–3):295–302

    CAS  PubMed  Google Scholar 

  31. Zhang ZB, Cao XH, Liang P, Liu HY (2013) Adsorption of uranium from aqueous solution using biochar produced by hydrothermal carbonization. J Radioanal Nucl Chem 295:1201–1208

    CAS  Google Scholar 

  32. Kang MJ, Han BE, Hahn PS (2002) Precipitation and adsorption of uranium(VI) under various aqueous conditions. Environ Eng Res 7(3):5743–5753

    Google Scholar 

  33. Prikryl JD, Jain A, Turner DR (2001) Uranium(VI) adsorption behavior on silicate mineral mixture. J Contam Hydrol 47:241–253

    CAS  PubMed  Google Scholar 

  34. Wu FC, Wu PH, Tseng RL, Juang RS (2014) Use of refuse derived fuel waste for the adsorption of 4-chlorophenol and dyes from aqueous solution: equilibrium and kinetics. J Taiwan Inst Chem Eng 45(5):2628–2639

    CAS  Google Scholar 

  35. Chen JH, Liu QL, Hu SR, Ni JC, He YS (2011) Adsorption mechanism of Cu(II) ions from aqueous solution by glutaraldehyde crosslinked humic acid-immobilized sodium alginate porous membrane adsorbent. Chem Eng J 173(2):511–519

    CAS  Google Scholar 

  36. Yamazaki Y, Tachibana Y, Kaneshiki T, Nomura M, Suzuki T (2015) Adsorption behavior of uranium ion using novel phenoltype resins in contaminated water containing seawater. Prog Nucl Energy 82:74–79

    CAS  Google Scholar 

  37. Ahmed O, Mohamed A, Hend S (2018) Selective preconcentration of uranium on chitosan stearoyl thiourea prior to its spectrophotometric determination. Sep Sci Technol 53(14):2267–2283

    Google Scholar 

  38. Wang GH, Liu JS, Wang XG, Xie ZY, Deng NS (2009) Adsorption of uranium(VI) from aqueous solution onto cross-linked chitosan. J Hazard Mater 168:1053–1058

    CAS  PubMed  Google Scholar 

  39. Yang AL, Yang P, Huang CP (2017) Preparation of graphene oxide–chitosan composite and adsorption performance for uranium. J Radioanal Nucl Chem 313:371–378

    CAS  Google Scholar 

  40. Tian G, Geng JX, Jin YD, Wang CL, Li SQ, Chen Z, Wang H, Zhao YS, Li SJ (2011) Sorption of uranium(VI) using oxime-grafted ordered mesoporous carbon CMK-5. J Hazard Mater 190:442–450

    CAS  PubMed  Google Scholar 

  41. Guimarães V, Rodríguez CE, Algarra M, Rocha F, Bobos I (2016) Kinetics of uranyl ions sorption on heterogeneous smectite structure at pH4 and 6 using a continuous stirred flow-through reactor. App Clay Sci 134:71–82

    Google Scholar 

Download references

Acknowledgements

The Main Academic and Technology Leader Funding Program of Jiangxi Province (20172BCB22020); this work was supported by the National Natural Science Foundation of China (21866006, 11875105, 11375043).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhirong Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Liu, Z., Ye, T. et al. Removal of uranyl ions from aqueous media by tannic acid-chitosan hydrothermal carbon: equilibria, kinetics and thermodynamics. J Radioanal Nucl Chem 326, 1843–1852 (2020). https://doi.org/10.1007/s10967-020-07452-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07452-7

Keywords

Navigation