Skip to main content
Log in

Monitoring geothermal springs and groundwater of Pir Panjal, Jammu and Kashmir, for radon contamination

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Hot water springs and bore wells/hand-pumps were investigated to quantify radon and uranium levels in Rajouri area of the Pir Panjal. Scintillation-based radon monitor was employed for radon-222 detection while as LED Flourimetric technique was used to detect uranium-238 concentration. The radon-222 levels, found in the study area, are much higher than the limits prescribed by regulatory agencies like United States Environmental Protection Agency (USEPA). Some of the samples exceeded the allowed limits of 100 Bq L−1 set by World Health Organisation while none of the samples lied within the prescribed level of 11 Bq L−1 prescribe by USEPA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Koike K, Yoshinaga T, Ueyama T, Asaue H (2014) Increased radon-222 in soil gas because of cumulative seismicity at active faults. Earth Planets Sp 66:57. https://doi.org/10.1186/1880-5981-66-57

    Article  Google Scholar 

  2. Khan HA (1993) Usefulness of radon measurements in earth sciences. Nucl Tracks Radiat Meas. https://doi.org/10.1016/0969-8078(93)90085-I

    Article  PubMed  Google Scholar 

  3. Smith M, Cross K, Paden M, Laban P (2006) Spring–Managing groundwater sustainably. IUCN, Gland, Switzerland

  4. Voronov AN (2004) Radon-rich waters in Russia. Environ Geol. https://doi.org/10.1007/s00254-003-0857-3

    Article  Google Scholar 

  5. Przylibski TA, Gorecka J (2014) 222Rn activity concentration differences in groundwaters of three Variscan granitoid massifs in the Sudetes (NE Bohemian Massif, SWPoland). J Environ Radioact. https://doi.org/10.1016/j.jenvrad.2014.02.021

    Article  PubMed  Google Scholar 

  6. UNSCEAR (2000) Sources and effects of ionizing radiation: United Nations Scientific Committee on the Effects of Atomic Radiation. UNSCEAR 2000 Rep to Gen Assem

  7. Tayyeb ZA, Kinsara AR, Farid SM (1998) A study on the radon concentrations in water in Jeddah (Saudi Arabia) and the associated health effects. J Environ Radioact 38:97–104. https://doi.org/10.1016/S0265-931X(97)00014-3

    Article  CAS  Google Scholar 

  8. Samet JM, Eradze GR (2000) Radon and lung cancer risk: taking stock at the millenium. Environ Health Perspect 108:635–641. https://doi.org/10.1289/ehp.00108s4635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. WHO (2009) WHO Handbook on indoor radon: a public health perspective. World Health Organization, Geneva

  10. Abdallah SM, Habib RR, Nuwayhid RY et al (2007) Radon measurements in well and spring water in Lebanon. Radiat Meas 42:298–303. https://doi.org/10.1016/j.radmeas.2006.11.004

    Article  CAS  Google Scholar 

  11. Ali N, Khan EU, Akhter P et al (2010) Estimation of mean annual effective dose through radon concentration in the water and indoor air of Islamabad and Murree. Radiat Prot Dosimetry. https://doi.org/10.1093/rpd/ncq160

    Article  PubMed  Google Scholar 

  12. Gundersen LCS, Schumann RR, Otton JK et al (2016) Geology of radon in the United States. In: Geological society of America special papers, pp 1–16

  13. Skeppström K (2007) Uranium and radon in groundwater. Eur Water 17:51–62. https://doi.org/10.1128/AEM.69.8.4689

    Article  Google Scholar 

  14. Agency for Toxic Substances and Disease Registry, Keith SK, Faroon O et al (2013) Toxicological profile for uranium

  15. Kurttio P, Harmoinen A, Saha H et al (2006) Kidney toxicity of ingested uranium from drinking water. Am J Kidney Dis 47:972–982. https://doi.org/10.1053/j.ajkd.2006.03.002

    Article  CAS  PubMed  Google Scholar 

  16. Al Zabadi H, Mallah K, Saffarini G (2015) Indoor exposure assessment of radon in the elementary schools, palestine. Int J Radiat Res 13:221–228

    Google Scholar 

  17. Kusnetz HL (1956) Radon daughters in mine atmospheres a field method for determining concentrations. Am Ind Hyg Assoc Q 17:85–88. https://doi.org/10.1080/00968205609344380

    Article  CAS  PubMed  Google Scholar 

  18. Gunning C, Scott AG (1982) Radon and thoron daughters in housing. Health Phys 42(4):527–528

  19. Althoyaib SS, El-Taher A (2015) Natural radioactivity measurements in groundwater from Al-Jawa, Saudi Arabia. J Radioanal Nucl Chem 304:547–552. https://doi.org/10.1007/s10967-014-3874-7

    Article  CAS  Google Scholar 

  20. Rather MI, Rashid I, Shahi N et al (2016) Massive land system changes impact water quality of the Jhelum River in Kashmir Himalaya. Environ Monit Assess 188:185. https://doi.org/10.1007/s10661-016-5190-x

    Article  CAS  PubMed  Google Scholar 

  21. Romshoo SA, Dar RA, Murtaza KO et al (2017) Hydrochemical characterization and pollution assessment of groundwater in Jammu Siwaliks, India. Environ Monit Assess 189:122. https://doi.org/10.1007/s10661-017-5860-3

    Article  CAS  PubMed  Google Scholar 

  22. Sarah S, Jeelani G, Ahmed S (2011) Assessing variability of water quality in a groundwater-fed perennial lake of Kashmir Himalayas using linear geostatistics. J Earth Syst Sci 120:399–411. https://doi.org/10.1007/s12040-011-0081-6

    Article  CAS  Google Scholar 

  23. Kaur M, Kumar A, Mehra R et al (2018) Assessment of primordial and anthropogenic radionuclide contents in the soil samples of lower Himalayas of Jammu & Kashmir, India. J Radioanal Nucl Chem 317:1165–1174. https://doi.org/10.1007/s10967-018-5988-9

    Article  CAS  Google Scholar 

  24. Kaur M, Kumar A, Mehra R, Kaur I (2020) Quantitative assessment of exposure of heavy metals in groundwater and soil on human health in Reasi district, Jammu and Kashmir. Environ Geochem Health 42:77–94. https://doi.org/10.1007/s10653-019-00294-7

    Article  CAS  PubMed  Google Scholar 

  25. Nazir S, Simnani S, Sahoo BK, Masood S (2020) Continuous radon measurements at High altitude Physics Observatory, Gulmarg, Kashmir valley, J&K. https://data.mendeley.com/datasets/vdzpw2hsbb/4. https://doi.org/10.17632/vdzpw2hsbb

  26. Zeeshan M, Azeez PA (2016) Hydro-chemical characterization and quality assessment of a Western Himalayan river, Munawar Tawi, flowing through Rajouri district, Jammu and Kashmir, India. Environ Monit Assess 188:520. https://doi.org/10.1007/s10661-016-5523-9

    Article  CAS  PubMed  Google Scholar 

  27. District Mining and Survey Report GOJ& K (2019) District Mining and Survey Report, Government Of Jammu & Kashmir. https://rajouri.nic.in/document/district-mining-and-survey-report/

  28. Census (2011) Rajouri District: Census 2011. In: 2011. https://censusindia.gov.in/2011census/dchb/0106_PART_B_DCHB_RAJOURI.pdf. Accessed 13 Feb 2020

  29. Vesterbacka P, Pettersson H, Hanste UM et al (2010) Intercomparison of Rn-222 determination from groundwater. Appl Radiat Isot 68:214–218. https://doi.org/10.1016/j.apradiso.2009.10.008

    Article  CAS  PubMed  Google Scholar 

  30. Gaware JJ, Sahoo BK, Sapra BK et al (2011) Indigenous development and networking of online radon monitors in the underground uranium mine. Radiat Prot Environ 34:37

    Google Scholar 

  31. Jobbágy V, Altzitzoglou T, Malo P et al (2017) A brief overview on radon measurements in drinking water. J Environ Radioact 173:18–24. https://doi.org/10.1016/j.jenvrad.2016.09.019

    Article  CAS  PubMed  Google Scholar 

  32. Nazir S, Simnani S, Sahoo BK et al (2020) Dose estimation of radioactivity in groundwater of Srinagar City, Northwest Himalaya, employing fluorimetric and scintillation techniques. Environ Geochem Health. https://doi.org/10.1007/s10653-020-00576-5

    Article  PubMed  Google Scholar 

  33. Kumar M, Kaushal A, Sahoo BK et al (2019) Measurement of uranium and radon concentration in drinking water samples and assessment of ingestion dose to local population in Jalandhar district of Punjab, India. Indoor Built Environ 28:611–618. https://doi.org/10.1177/1420326X17703773

    Article  CAS  Google Scholar 

  34. National Research Council (1999) Risk assessment of radon in drinking water. National Academies Press, Washington, D.C.

    Google Scholar 

  35. Kaur M, Kumar A, Mehra R, Mishra R (2019) Age-dependent ingestion and inhalation doses due to intake of uranium and radon in water samples of Shiwalik Himalayas of Jammu and Kashmir, India. Environ Monit Assess 191:224. https://doi.org/10.1007/s10661-019-7361-z

    Article  CAS  PubMed  Google Scholar 

  36. Ng K-H, Abdullah BJJ, Sivafingam S (1999) Medical radiation exposures for diagnostic radiology in Malaysia. Health Phys 77:33–36. https://doi.org/10.1097/00004032-199907000-00007

    Article  CAS  PubMed  Google Scholar 

  37. Saïdou, Tokonami S, Janik M et al (2015) Radon-thoron discriminative measurements in the high natural radiation areas of southwestern Cameroon. J Environ Radioact 150:242–246. https://doi.org/10.1016/j.jenvrad.2015.09.006

    Article  CAS  PubMed  Google Scholar 

  38. Nazir S, Simnani S, Mishra R et al (2020) Simultaneous measurements of radon, thoron and their progeny for inhalation dose assessment in indoors of Srinagar, J&K, India. J Radioanal Nucl Chem 325:315–328. https://doi.org/10.1007/s10967-020-07233-2

    Article  CAS  Google Scholar 

  39. Jayangondaperumal R, Thakur VC (2008) Co-seismic secondary surface fractures on southeastward extension of the rupture zone of the 2005 Kashmir earthquake. Tectonophysics 446:61–76. https://doi.org/10.1016/j.tecto.2007.10.006

    Article  Google Scholar 

  40. NCRP (1993) Limitation of exposure to ionizing radiation. NCRP Report 116. Bethesda (MD): National Council on radiation protection and measurements

  41. Sharma T, Sharma A, Kaur I et al (2019) Uranium distribution in groundwater and assessment of age dependent radiation dose in Amritsar, Gurdaspur and Pathankot districts of Punjab, India. Chemosphere 219:607–616. https://doi.org/10.1016/j.chemosphere.2018.12.039

    Article  CAS  PubMed  Google Scholar 

  42. Zhuo W, Iida T, Yang X (2001) Occurrence of 222Rn, 226Ra, 228Ra and U in groundwater in Fujian Province, China. J Environ Radioact 53:111–120. https://doi.org/10.1016/S0265-931X(00)00108-9

    Article  CAS  PubMed  Google Scholar 

  43. Godoy JM, Godoy ML (2006) Natural radioactivity in Brazilian groundwater. J Environ Radioact 85:71–83. https://doi.org/10.1016/j.jenvrad.2005.05.009

    Article  CAS  PubMed  Google Scholar 

  44. Przylibski TA, Mamont-Cieśla K, Kusyk M et al (2004) Radon concentrations in groundwaters of the Polish part of the Sudety Mountains (SW Poland). J Environ Radioact 75:193–209. https://doi.org/10.1016/j.jenvrad.2003.12.004

    Article  CAS  PubMed  Google Scholar 

  45. Vesterbacka P, Mäkeläinen I, Arvela H (2005) Natural radioactivity in drinking water in private wells in Finland. Radiat Prot Dosimetry. https://doi.org/10.1093/rpd/nch446

    Article  PubMed  Google Scholar 

  46. Cho JS, Ahn JK, Kim H-C, Lee DW (2004) Radon concentrations in groundwater in Busan measured with a liquid scintillation counter method. J Environ Radioact 75:105–112. https://doi.org/10.1016/j.jenvrad.2003.06.002

    Article  CAS  PubMed  Google Scholar 

  47. Bonotto DM (2014) 222Rn, 220Rn and other dissolved gases in mineral waters of southeast Brazil. J Environ Radioact 132:21–30. https://doi.org/10.1016/j.jenvrad.2014.01.005

    Article  CAS  PubMed  Google Scholar 

  48. Khattak NU, Khan MA, Shah MT, Javed MW (2011) Radon concentration in drinking water sources of the Main Campus of the University of Peshawar and surrounding areas, Khyber Pakhtunkhwa, Pakistan. J Radioanal Nucl Chem 290:493–505. https://doi.org/10.1007/s10967-011-1297-2

    Article  CAS  Google Scholar 

  49. Alabdula’aly Abdulrahman I (2014) Occurrence of radon in groundwater of Saudi Arabia. J Environ Radioact 138:186–191

    Article  Google Scholar 

  50. Atkins ML, Santos IR, Perkins A, Maher DT (2016) Dissolved radon and uranium in groundwater in a potential coal seam gas development region (Richmond River Catchment, Australia). J Environ Radioact 154:83–92

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We appreciate the prodigious efforts of Zubair Salafi and Adil Rashid for their expeditious support to carry out field investigation. The authors express gratitude to the editor and the three anonymous reviewers for their comments on the earlier version of the manuscript that greatly improved the structure and content of this manuscript. A sincere thank you to Nidhi Jacob and Zabirah Fazili for their meticulous proofreading of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

SN and SS designed the research plan and wrote the manuscript with contributions from BKS, RM, TS and SM. SN carried out all the radioactive surveys. SN and TS analysed the samples. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Shakeel Simnani.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazir, S., Simnani, S., Sahoo, B.K. et al. Monitoring geothermal springs and groundwater of Pir Panjal, Jammu and Kashmir, for radon contamination. J Radioanal Nucl Chem 326, 1915–1923 (2020). https://doi.org/10.1007/s10967-020-07451-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07451-8

Keywords

Navigation