Skip to main content
Log in

Adsorption of 140La and 144Ce radionuclides on ZnO nanoparticles: equilibrium and kinetics studies

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A comparative evaluation adsorption of 140La and 144Ce from water solutions on chemical ZnO (ZnO-C) and green synthesis ZnO (ZnO-G) by Nerium oleander flowers extract. Various parameters including pH, time and concentration were optimized to achieve maximum adsorption capacity. The adsorption efficiency of 140La and 144Ce was 59 and 69 on ZnO-G and 61 and 44% on ZnO-C respectively. Langmuir and pseudo-second order kinetic models were best suited to explain the adsorption process. The amount adsorbed of 140La and 144Ce ions at equilibrium (qe) was 23.9 and 27.8 on ZnO-G and 17.8 and 24.5 mg/g on ZnO-C respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Aryaeinejad R, Reber EL, Jewell JK et al (2005) Fission process and its application in fissile material identification. J Radioanal Nucl Chem 264:155–162

    CAS  Google Scholar 

  2. Spyrou N (1999) Neutron activation analysis challenges: problems and applications in biomedical and other areas. J Radioanal Nucl Chem 239:59–70

    CAS  Google Scholar 

  3. Trkov A, Radulović V (2015) Nuclear reactions and physical models for neutron activation analysis. J Radioanal Nucl Chem 304:763–778

    CAS  Google Scholar 

  4. Bennett KT, Kozimor SA, Manard BT et al (2019) Rapid activation product separations from fission products and soil matrixes. J Radioanal Nucl Chem 322:281–289

    CAS  Google Scholar 

  5. Hou X, Olsson M, Togneri L et al (2016) Present status and perspective of radiochemical analysis of radionuclides in Nordic countries. J Radioanal Nucl Chem 309:1283–1319

    CAS  Google Scholar 

  6. Merín R, Tarancón A, Mitev K et al (2019) Evaluation of synthesis conditions for plastic scintillation foils used to measure alpha-and beta-emitting radionuclides. J Radioanal Nucl Chem 319:135–145

    Google Scholar 

  7. Gouda MM, Dawood YH, Zaki AA et al (2019) Adsorption characteristic of Cs+ and Co2+ ions from aqueous solutions onto geological sediments of radioactive waste disposal site. J Geochem Explor 206:106366. https://doi.org/10.1016/j.gexplo.2019.106366

    Article  CAS  Google Scholar 

  8. Ogata T, Kim YS, Yacout A (2020) Metal fuel performance modeling and simulation. Compr Nucl Mater (2nd edn) 5:43–87 

    Google Scholar 

  9. Plompen AJM, Cabellos O, De Saint Jean C et al (2020) The joint evaluated fission and fusion nuclear data library. Springer, Berlin

    Google Scholar 

  10. Han Q, Du M, Guan Y et al (2020) Removal of simulated radioactive cerium (III) based on innovative magnetic trioctylamine-polystyrene composite microspheres. Chem Phys Lett 741:137092. https://doi.org/10.1016/j.cplett.2020.137092

    Article  CAS  Google Scholar 

  11. Dai Y, Lv R, Fan J et al (2020) Highly ordered macroporous silica dioxide framework embedded with supramolecular as robust recognition agent for removal of cesium. J Hazard Mater 391:121467. https://doi.org/10.1016/j.jhazmat.2019.121467

    Article  CAS  PubMed  Google Scholar 

  12. Dai Y, Lv R, Fan J et al (2019) Adsorption of cesium using supermolecular impregnated XAD-7 composite: isotherms, kinetics and thermodynamics. J Radioanal Nucl Chem 321:473–480. https://doi.org/10.1007/s10967-019-06625-3

    Article  CAS  Google Scholar 

  13. Gupta NK, Choudhary BC, Gupta A et al (2019) Graphene-based adsorbents for the separation of f-metals from waste solutions: a review. J Mol Liq 289:111121

    CAS  Google Scholar 

  14. da Costa TB, da Silva MGC, Vieira MGA (2020) Recovery of rare–earth metals from aqueous solutions by bio/adsorption using non-conventional materials: a review with recent studies and promising approaches in column applications. J Rare Earths 38:339–355

    Google Scholar 

  15. Ganguli R, Cook DR (2018) Rare earths: a review of the landscape. MRS Energy Sustain 5:E9

    Google Scholar 

  16. Iftekhar S, Srivastava V, Sillanpää M (2017) Enrichment of lanthanides in aqueous system by cellulose based silica nanocomposite. Chem Eng J 320:151–159

    CAS  Google Scholar 

  17. Ashour RM, El-Sayed R, Abdel-Magied AF et al (2017) Selective separation of rare earth ions from aqueous solution using functionalized magnetite nanoparticles: kinetic and thermodynamic studies. Chem Eng J 327:286–296

    CAS  Google Scholar 

  18. Xu X, Jiang X-Y, Jiao F-P et al (2018) Tunable assembly of porous three-dimensional graphene oxide-corn zein composites with strong mechanical properties for adsorption of rare earth elements. J Taiwan Inst Chem Eng 85:106–114

    CAS  Google Scholar 

  19. Xiaoqi SUN, Huimin LUO, Mahurin SM et al (2016) Adsorption of rare earth ions using carbonized polydopamine nano carbon shells. J Rare Earths 34:77–82

    Google Scholar 

  20. Kołodyńska D, Bąk J, Majdańska M, Fila D (2018) Sorption of lanthanide ions on biochar composites. J Rare Earths 36:1212–1220

    Google Scholar 

  21. Anastopoulos I, Bhatnagar A, Lima EC (2016) Adsorption of rare earth metals: a review of recent literature. J Mol Liq 221:954–962

    CAS  Google Scholar 

  22. Gupta NK, Gupta A, Ramteke P et al (2019) Biosorption-a green method for the preconcentration of rare earth elements (REEs) from waste solutions: a review. J Mol Liq 274:148–164

    CAS  Google Scholar 

  23. Zaidi Z, Siddiqui SI, Fatima B, Chaudhry SA (2019) Synthesis of ZnO nanospheres for water treatment through adsorption and photocatalytic degradation: modelling and process optimization. Mater Res Bull 120:110584

    CAS  Google Scholar 

  24. Bora T, Sathe P, Laxman K et al (2017) Defect engineered visible light active ZnO nanorods for photocatalytic treatment of water. Catal Today 284:11–18

    CAS  Google Scholar 

  25. Li Z, Huang Y, Wang X et al (2017) Three-dimensional hierarchical structures of ZnO nanorods as a structure adsorbent for water treatment. J Mater Sci Technol 33:864–868

    CAS  Google Scholar 

  26. Kaynar ÜH, Ayvacıklı M, Hiçsönmez Ü, Kaynar SÇ (2015) Removal of thorium (IV) ions from aqueous solution by a novel nanoporous ZnO: isotherms, kinetic and thermodynamic studies. J Environ Radioact 150:145–151

    CAS  PubMed  Google Scholar 

  27. Wang Y, Zhao X, Duan L et al (2015) Structure, luminescence and photocatalytic activity of Mg-doped ZnO nanoparticles prepared by auto combustion method. Mater Sci Semicond Process 29:372–379

    CAS  Google Scholar 

  28. Agarwal H, Kumar SV, Rajeshkumar S (2017) A review on green synthesis of zinc oxide nanoparticles—an eco-friendly approach. Resour Technol 3:406–413

    Google Scholar 

  29. Moghaddas SMTH, Elahi B, Darroudi M, Javanbakht V (2019) Green synthesis of hexagonal-shaped zinc oxide nanosheets using mucilage from flaxseed for removal of methylene blue from aqueous solution. J Mol Liq 296:111834

    Google Scholar 

  30. Dobrucka R, Długaszewska J (2015) PII: S1319-562X (15) 00131-X

  31. Khalil M, Alqahtany FZ (2020) Comparative studies of the synthesis and physical characterization of ZnO nanoparticles using nerium oleander flower extract and chemical methods. J Inorg Organomet Polym Mater. https://doi.org/10.1007/s10904-020-01494-w

    Article  Google Scholar 

  32. Li X, Lu H, Zhang Y et al (2016) Fabrication of magnetic alginate beads with uniform dispersion of CoFe2O4 by the polydopamine surface functionalization for organic pollutants removal. Appl Surf Sci 389:567–577

    CAS  Google Scholar 

  33. Nugraha Saputro AG, Agusta MK et al (2017) Selectivity of CO and NO adsorption on ZnO (0002) surfaces: a DFT investigation. Appl Surf Sci 410:373–382. https://doi.org/10.1016/j.apsusc.2017.03.009

    Article  CAS  Google Scholar 

  34. Pinheiro D, Sunaja Devi KR, Jose A et al (2020) Effect of surface charge and other critical parameters on the adsorption of dyes on SLS coated ZnO nanoparticles and optimization using response surface methodology. J Environ Chem Eng 8:103987. https://doi.org/10.1016/j.jece.2020.103987

    Article  CAS  Google Scholar 

  35. Jabli M, Tka N, Salman GA et al (2017) PT. J Mol Liq. https://doi.org/10.1016/j.molliq.2017.07.018

    Article  Google Scholar 

  36. Kusrini E, Kinastiti DD, Wilson LD et al (2018) Adsorption of lanthanide ions from an aqueous solution in multicomponent systems using activated carbon from banana peels (Musa paradisiaca L.). Int J Technol 9:1132–1139

    Google Scholar 

  37. Kwon O-H, Kim J-O, Cho D-W et al (2016) Adsorption of As (III), As (V) and Cu (II) on zirconium oxide immobilized alginate beads in aqueous phase. Chemosphere 160:126–133

    CAS  PubMed  Google Scholar 

  38. Sureshkumar MK, Das D, Mallia MB, Gupta PC (2010) Adsorption of uranium from aqueous solution using chitosan-tripolyphosphate (CTPP) beads. J Hazard Mater 184:65–72

    CAS  PubMed  Google Scholar 

  39. Lagergren SK (1898) About the theory of so-called adsorption of soluble substances. Sven Vetenskapsakad Handingarl 24:1–39

    Google Scholar 

  40. Ho YS, McKay G (1999) Batch lead (II) removal from aqueous solution by peat: equilibrium and kinetics. Trans IChemE 77:165–173

    CAS  Google Scholar 

  41. Weber WJ, Morris JC (1963) Kinetics of adsorption on carbon from solution. J Sanit Eng Div 89:31–60

    Google Scholar 

  42. Chien SH, Clayton WR (1980) Application of Elovich equation to the kinetics of phosphate release and sorption in soils 1. Soil Sci Soc Am J 44:265–268

    CAS  Google Scholar 

  43. Chunxiang LI, Jie GAO, Jianming PAN et al (2009) Synthesis, characterization, and adsorption performance of Pb(II)-imprinted polymer in nano-TiO2 matrix. J Environ Sci 21:1722–1729

    Google Scholar 

  44. Cui W, Kang X, Zhang X, Cui X (2019) Gel-like ZnO/Zr-MOF (bpy) nanocomposite for highly efficient adsorption of Rhodamine B dye from aqueous solution. J Phys Chem Solids 134:165–175. https://doi.org/10.1016/j.jpcs.2019.06.004

    Article  CAS  Google Scholar 

  45. Liu L, Wan Y, Xie Y et al (2012) The removal of dye from aqueous solution using alginate-halloysite nanotube beads. Chem Eng J 187:210–216

    CAS  Google Scholar 

  46. Yuvakkumar R, Suresh J, Nathanael AJ et al (2014) Rambutan (Nephelium lappaceum L.) peel extract assisted biomimetic synthesis of nickel oxide nanocrystals. Mater Lett 128:170–174

    CAS  Google Scholar 

  47. Kajjumba GW, Emik S, Öngen A et al (2018) Modelling of adsorption kinetic processes—errors, theory and application. In: Edebali S (ed) Advanced sorption process applications. IntechOpen. https://doi.org/10.5772/intechopen.80495. Available from: https://www.intechopen.com/books/advanced-sorption-process-applications/modelling-of-adsorption-kinetic-processes-errors-theory-and-application

  48. Kara M, Yuzer H, Sabah E, Celik MS (2003) Adsorption of cobalt from aqueous solutions onto sepiolite. Water Res 37:224–232

    CAS  PubMed  Google Scholar 

  49. Behdani FN, Rafsanjani AT, Torab-Mostaedi M, Mohammadpour SMAK (2013) Adsorption ability of oxidized multiwalled carbon nanotubes towards aqueous Ce(III) and Sm(III). Korean J Chem Eng 30:448–455

    CAS  Google Scholar 

  50. Kütahyalı C, Sert Ş, Çetinkaya B et al (2012) Biosorption of Ce(III) onto modified Pinus brutia leaf powder using central composite design. Wood Sci Technol 46:721–736

    Google Scholar 

  51. Yantasee W, Fryxell GE, Addleman RS et al (2009) Selective removal of lanthanides from natural waters, acidic streams and dialysate. J Hazard Mater 168:1233–1238

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhao F, Repo E, Meng Y et al (2016) An EDTA-β-cyclodextrin material for the adsorption of rare earth elements and its application in preconcentration of rare earth elements in seawater. J Colloid Interface Sci 465:215–224

    CAS  PubMed  Google Scholar 

  53. Li X, Zhang X, Yang H, Zhou Q (2018) Atomic-layered Mn clusters deposited on palygorskite as powerful adsorbent for recovering valuable REEs from wastewater with superior regeneration stability. J Colloid Interface Sci 509:395–405

    CAS  PubMed  Google Scholar 

  54. Sadovsky D, Brenner A, Astrachan B et al (2016) Biosorption potential of cerium ions using Spirulina biomass. J Rare Earths 34:644–652

    CAS  Google Scholar 

  55. Ramasamy DL, Wojtuś A, Repo E et al (2017) Ligand immobilized novel hybrid adsorbents for rare earth elements (REE) removal from waste water: assessing the feasibility of using APTES functionalized silica in the hybridization process with chitosan. Chem Eng J 330:1370–1379

    CAS  Google Scholar 

  56. Butnariu M, Negrea P, Lupa L et al (2015) Remediation of rare earth element pollutants by sorption process using organic natural sorbents. Int J Environ Res Public Health 12:11278–11287

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Sert Ş, Kütahyali C, İnan S et al (2008) Biosorption of lanthanum and cerium from aqueous solutions by Platanus orientalis leaf powder. Hydrometallurgy 90:13–18

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Khalil.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alqahtany, F.Z., Khalil, M. Adsorption of 140La and 144Ce radionuclides on ZnO nanoparticles: equilibrium and kinetics studies. J Radioanal Nucl Chem 327, 91–104 (2021). https://doi.org/10.1007/s10967-020-07447-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07447-4

Keywords

Navigation