Skip to main content
Log in

Radiolytic behaviour of a TODGA based solvent under alpha irradiation

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this work the radiolytic stability of a TODGA based solvent has been investigated in alpha radiolysis measured by solvent extraction distribution ratios. Solutions of TODGA in alkane diluents have been subjected to 244Cm α-irradiation in the presence of nitric acid (0.5 M) and analysed using radiometric techniques to determine their rates of radiolytic degradation. It was shown that alpha radiolysis, similarly to external gamma irradiation, produces an exponential decrease of the free TODGA concentration of the organic solvent as the solvent is degraded with increasing absorbed alpha dose. The degradation constant, obtained from the exponential decrease, indicates that the free TODGA concentration is halved with every 1.0 MGy deposited to the solvent from internal alpha decay. This result could be useful information when dealing with high activity actinide solutions in TODGA based solvent extraction systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sasaki Y, Sugo Y, Suzuki S, Tachimori S (2001) The novel extractants, Diglycolamides, for the extraction of lanthanides and actinides in HNO3–N-Dodecane system. Solvent Extr Ion Exch 19(1):91–103

    Article  CAS  Google Scholar 

  2. Ansari SA, Pathak P, Mohapatra PK, Manchanda VK (2012) Chemistry of diglycolamides: promising extractants for actinide partitioning. Chem Rev 112(3):1751–1772

    Article  CAS  Google Scholar 

  3. Modolo G, Asp H, Schreinemachers C, Vijgen H (2007) Development of a TODGA based process for partitioning of actinides from a PUREX Raffinate Part I: batch extraction optimization studies and stability tests. Solvent Extr Ion Exch 25(6):703–721

    Article  CAS  Google Scholar 

  4. Ansari SA, Pathak PN, Manchanda VK, Husain M, Prasad AK, Parmar VS (2005) N, N, N′, N′-Tetraoctyl Diglycolamide (TODGA): a promising extractant for actinide-partitioning from high-level waste (HLW). Solvent Extr Ion Exch 23(4):463–479

    Article  CAS  Google Scholar 

  5. Whittaker D, Geist A, Modolo G, Taylor R, Sarsfield M, Wilden A (2018) Applications of Diglycolamide based solvent extraction processes in spent nuclear fuel reprocessing, Part 1: TODGA. Solv Extr Ion Exchange 36:223–229

    Article  CAS  Google Scholar 

  6. Magnusson D, Christiansen B, Malmbeck R, Glatz J-P, Modolo G, Serrano-Purroy D, Sorel C (2009) Demonstration of a TODGA based extraction process for the partitioning of minor actinides from a PUREX Raffinate—part III: centrifugal contactor run using genuine fuel solution. Solv Extr Ion Exchange 27:26–35

    Article  CAS  Google Scholar 

  7. Modolo G, Wilden A, Kaufholz P, Bosbach D, Geist A (2014) Development and demonstration of innovative partitioning processes (I-Sanex and 1-Cycle SANEX) for actinide partitioning. Prog Nucl Energy 72:107–114

    Article  CAS  Google Scholar 

  8. Adnet J-M, Miguirditchian M, Hill C, Heres X, Lecomte M, Masson M, Brossard P, Baron P (2005) Development of new hydrometallurgical processes for actinide recovery: GANEX concept. In: Proceedings of GLOBAL, Atomic Energy Society of Japan

  9. Taylor R, Carrott M, Galan H, Geist A, Hères X, Maher C, Wilden A (2016) The EURO-GANEX process: current status of flowsheet development and process safety studies. Procedia Chem 21:524–529

    Article  Google Scholar 

  10. Malmbeck R, Magnusson D, Bourg S, Carrott M, Geist A, Hérès X, Wilden A (2019) Homogenous recycling of transuranium elements from irradiated fast reactor fuel by the EURO-GANEX solvent extraction process. Radiochim Acta 107:917–929

    Article  CAS  Google Scholar 

  11. Bell K, Carpentier C, Carrotta M, Geist A, Gregsona C, Hérèsc X, Magnusson D, Malmbeck R, McLachlan F, Modolo G, Müllich U, Sypula M, Taylor R, Wilden A (2012) Progress towards the development of a new GANEX process. Procedia Chem 7:392–398

    Article  CAS  Google Scholar 

  12. Ravi J, Venkatesan KA, Antony MP, Srinivasan TG, Vasudeva Rao PR (2015) Solvent extraction behavior of trivalent metal ions in diglycolamides having same carbon to oxygen ratio. Sep Sci Technol 51(1):32–40

    Article  Google Scholar 

  13. Tachimori S, Sasaki Y, Suzuki SI (2002) Modification of TODGA-n-dodecane solvent with a monoamide for high loading of lanthanides (III) and actinides (III). Solvent Extr Ion Exch 20(6):687–699

    Article  CAS  Google Scholar 

  14. Sugo Y, Sasaki Y, Tachimori S (2002) Studies on hydrolysis and radiolysis of N, N, N′, N′-tetraoctyl-3-oxapentane-1,5-diamide. Radiochim Acta 90:161–165

    Article  CAS  Google Scholar 

  15. Sugo Y, Izum Y, Yoshida Y, Nishijima S, Sasaki Y, Kimura T, Sekine T, Kudo H (2007) Influence of diluent on radiolysis of amides in organic solution. Radiat Phys Chem 76:794–800

    Article  CAS  Google Scholar 

  16. Galán H, Nunez A, Sedano R, Espartero AG, Durana A, Mendoza JD (2012) Radiolytic stability of TODGA: characterization of degraded samples under different experimental conditions. Procedia Chem 7:195–201

    Article  Google Scholar 

  17. Sugo Y, Taguchi M, Sasaki Y, Hirota K, Kimura T (2009) Radiolysis study of actinide complexing agent by irradiation with helium ion beam. Radiat Phys Chem 78:1140–1144

    Article  CAS  Google Scholar 

  18. Mincher BJ, Curry RD (2000) Considerations for choice of a kinetic figure of merit in process radiation chemistry for waste treatment. Appl Radiat Isot 52(2):189–199

    Article  CAS  Google Scholar 

  19. Weßling P, Trumm M, Geist A, Panak PJ (2018) Stoichiometry of An(iii)–DMDOHEMA complexes formed during solvent extraction. Dalton Trans 47(32):10906–10914

    Article  Google Scholar 

  20. Zhu Z-X, Sasaki Y, Suzuki H, Suzuki S, Kimura T (2004) Cumulative study on solvent extraction of elements by N, N, N′, N′-Tetraoctyl-3-Oxapentanediamide (TODGA) from nitric acid into N-Dodecane. Anal Chim Acta 527(2):163–168

    Article  CAS  Google Scholar 

  21. Yaita T, Herlinger AW, Thiyagarajan P, Jensen MP (2004) Influence of extractant aggregation on the extraction of trivalent f-Element cations by a Tetraalkyldiglycolamide. Solv Extr Ion Exchange 22(4):553–571

    Article  CAS  Google Scholar 

  22. Singh MB, Patil SR, Lohi AA, Gaikar VG (2018) Insight into nitric acid extraction and aggregation of N, N, N’, N’-Tetraoctyl diglycolamide (TODGA) in organic solutions by molecular dynamics simulation. Sep Sci Technol 53(9):1361–1371

    Article  CAS  Google Scholar 

  23. Pathak PN, Ansari SA, Kumar S, Tomar BS, Manchanda VK (2010) Dynamic light scattering study on the aggregation behaviour of N, N, N′, N′-tetraoctyl diglycolamide (TODGA) and its correlation with the extraction behaviour of metal ions. J Colloid Interface Sci 342(1):114–118

    Article  CAS  Google Scholar 

  24. Magill J, Dreher R, Ünlü K, Heller-Zeisler S, Zeisler R (2009) The NUCLEONICA nuclear science portal. In: AIP conference proceedings

  25. Magnusson D, Christiansen B, Malmbeck R, Glatz JP (2009) Investigation of the radiolytic stability of a CyMe4-BTBP based SANEX solvent. Radiochim Acta 97:497–502

    CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to especially thank Adrian Nicholl (JRC-Karlsruhe) for his constant support before, during and after the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. L. Banik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malmbeck, R., Banik, N.L. Radiolytic behaviour of a TODGA based solvent under alpha irradiation. J Radioanal Nucl Chem 326, 1609–1615 (2020). https://doi.org/10.1007/s10967-020-07444-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07444-7

Keywords

Navigation