Skip to main content
Log in

Monte Carlo simulations of MgO and complex oxide protective thin layers bombarded with noble-gas ion in plasma discharge devices

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The lifespan of plasma discharge devices is strongly influenced by the deterioration characteristics of MgO protective layer deposited on the dielectric covering the electrode. In order to attain both lower driving voltage and higher luminous efficiency in these devices, different complex metal oxides protective layers have been extensively studied as alternatives to MgO. However, the interaction between energetic ions and fast neutral atoms with the protective layer can produce serious damages to it and their nearby components. In this paper, we study the ion beam bombardment for several protective layers by low-energy noble gas with various ion incidence angles by using the Monte Carlo simulation. On the basis of the binary collision approximation using SRIM-2013, different parameters are discussed for instance backscattering yield, retained dose, sputtering yield, number of vacancies, and ion range of MgO, (Mg,Ca)O, (Mg,Sr)O, (Mg,Ba)O and (Mg,Ca,Sr)O. From our results, the retained dose, sputtering yield and number of vacancies of complex metal oxide protective layers are lower than that of MgO. Moreover, the backscattering yield increases by increasing the incident angles and it is highest for complex metal oxide protective layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Behrisch R, Eckstein W (2007) Sputtering by particle bombardment: experiments and computer calculations from threshold to Mev energies. Springer, Berlin

    Google Scholar 

  2. Yu KY, Liu Y, Sun C, Wang H, Shao L, Fu EG, Zhang X (2012) Radiation damage in helium ion irradiated nanocrystalline Fe. J Nucl Mater 425:140–146

    Article  CAS  Google Scholar 

  3. el Marsi M, Moultif R, Lahlou S, Rochd S, Dezairi A (2018) Monte Carlo simulations of MgO and Mg(OH)2 thin films sputtering yields by noble-gas ion bombardment in plasma display panel PDP. Nucl Instrum Methods Phys Res B 430:72–78

    Article  Google Scholar 

  4. Gu H, Cui J, Niu D-D, Wellbrock A, Tseng W-L, Xu X-J (2019) Monte Carlo calculations of the atmospheric sputtering yields on Titan. Astron Astrophys 623:A18

    Article  CAS  Google Scholar 

  5. Zalm PC (1983) Energy dependence of the sputtering yield of silicon bombarded with neon, argon, krypton, and xenon ions. J Appl Phys 54:2660

    Article  CAS  Google Scholar 

  6. Hammer EE (1995) Cathode fall voltage relationship with fluorescent lamps. J Illum Eng Soc 24(1):116–122. https://doi.org/10.1080/00994480.1995.10748104

    Article  Google Scholar 

  7. Zukawa T, Sasaki Y, Tsujimoto H, Kamiko N, Nakamura E (2016) Development of a mercury-free plate-type ultraviolet light source. In: 2016 Int. Ultrav. Assoc. World Congr. Proc. (2016)

  8. Prakash R, Hossain AM, Pal UN, Kumar N, Khainar K, Mohan MK (2017) Dielectric barrier discharge based mercury-free plasma UV-lamp for efficient water disinfection. Sci Rep 7:17426-1-8

    Google Scholar 

  9. Park S-J, Herring CM, Mironov AE, Cho JH, Eden JG (2017) 25 W of average power at 172 nm in the vacuum ultraviolet from flat, efficient lamps driven by interlaced arrays of microcavity plasmas. APL Photonics 2:041302-1-7

    Article  Google Scholar 

  10. Awamoto K, Hirakawa H, Guo B, Shinoda T (2015) Current status of the flexible surface light source development using LAFi technology. In: Proceedings of 22th international display workshops, vol 1, pp 619–620

  11. Park CH, Choi JY, Choi MS, Kim YK, Lee HJ (2005) Effects of MgO thin film thickness and deposition rate on the lifetime of ac plasma display panel. Surf Coat Technol 197:223–228

    Article  CAS  Google Scholar 

  12. Lee JH, Eun JH, Kim SG, Park SY, Lee MJ, Kim HJ (2003) Hydration behavior of MgO single crystals and thin films. J Mater Res 18(12)

  13. Oversluizen G, Dekker T, Gillies MF, De Zwart ST (2004) High-Xe-content high-efficacy PDPs. J SID 12:51–55

    CAS  Google Scholar 

  14. Motoyama Y, Murakami Y, Seki M, Kurauchi T, Kikuchi N (2007) SrCaO protective layer for high-efficiency PDPs. IEEE Trans Electron Devices 54(6):1308–1314

    Article  CAS  Google Scholar 

  15. Motoyama Y, Kato D, Saito N, Seki M (2013) Carbonation reaction of (Ca, Mg)O protective layer on plasma display panel. J SID 21:41–45

    CAS  Google Scholar 

  16. Park C-S, Jung EY, Tae H-S (2017) Improvement of luminous efficiency using Li-doped MgO layer coated by MgCaO crystal powders in plasma display panels. Mol Cryst Liq Cryst 645:130–137

    Article  CAS  Google Scholar 

  17. Takeda E, Zukawa T, Tsujita T et al (2018) Annealing process for recovery of carbonated (Mg,Ca)O protective layer for plasma discharge device. Jpn J Appl Phys 57(9):096001

    Article  Google Scholar 

  18. Takeda E, Zukawa T, Ishibashi T et al (2019) Shrinkage and expansion of discharge areas in plasma discharge devices having complex oxide protective layers. J Phys Chem Solids 130:172–179

    Article  CAS  Google Scholar 

  19. Takeda E, Zukawa T, Ishibashi T et al (2019) Mechanisms for the degradation of phosphor excitation efficiency by short wavelength vacuum ultraviolet radiation in plasma discharge devices. J Phys Chem Solids 124:274–280

    Article  CAS  Google Scholar 

  20. Lee KA, Min BK, Byeon YS, Choi JH, Jung RJ, Uhm HS, Choi EH (2013) Measurement of energy band structure of MgO, MgSrO and MgCaO thin film by their secondary electron emission coefficient due to auger neutralization. J Phys Conf Ser 417:012009-1-11

    Article  Google Scholar 

  21. Yu HK, Kim W-K, Lee J-L, Kim JS, Ryu JH (2006) The effect of doping to MgO protection layer on secondary electron emission property. In: SID international symposium digest technical paper, vol 37, pp 544–546

  22. Kim R, Kim Y, Cho J, Park J-W (2000) Luminous efficiency and secondary electron emission characteristics of alternating current plasma display panels with MgO–SrO–CaO protective layers. J Vac Sci Technol A 18:2493–2496

    Article  CAS  Google Scholar 

  23. Boeuf JP (2003) Plasma display panels: physics, recent developments and key issues. J Phys D Appl Phys 36:R53–R79

    Article  CAS  Google Scholar 

  24. Lee SM, Yang SS, Seo YS, Lee JK (2007) MgO erosion profile in the high-pressure coplanar discharge. J Plasma Chem Plasma Process 27:349–358

    Article  CAS  Google Scholar 

  25. Ahn HS, Kim TE, Cho E, Ji M, Lee CK, Han S, Cho Y, Kim C (2008) Molecular dynamics study on low-energy sputtering properties of MgO surfaces. J Appl Phys 103:073518

    Article  Google Scholar 

  26. Hine K, Yoshimura S, Ikuse K, Kiuchi M, Hashimoto J, Terauchi M, Nishitani M, Hamaguchi S (2008) Thin Solid Films 517:835

    Article  CAS  Google Scholar 

  27. Yoshimura S, Hine K, Kiuchi M, Hashimoto J, Terauchi M, Honda Y, Nishitani M, Hamaguchi S (2011) J Phys D Appl 44:255203

    Article  Google Scholar 

  28. Weissmann R, Behrisch R (1973) Contributions of backscattered ions to sputtering yields depending on primary ion energy. J Radiat Effects 19:69–75

    Article  CAS  Google Scholar 

  29. Yangida Y, Oishi T, Miyaji T, Watanabe C, Nitta N (2017) Nanoporous structure formation in GaSb, InSb, and Ge by ion beam irradiation under controlled point defect creation conditions. Nanomaterials 7(7):180

    Article  Google Scholar 

  30. Zhang L, Xu X, Wu Y (2013) Sputtering effect of low-energy ions on biological target: the analysis of sputtering product of urea and capsaicin. J Nucl Instrum Methods Phys B 308:28–33

    Article  CAS  Google Scholar 

  31. Guping D, Tingwen X, Yun L (2012) Preferential sputtering of Ar ion processing SiO2 mirror, AOMATT. In: The 6 th SPIE international symposium on advanced optical manufacturing and testing technologies

  32. Ziegler JF et al (2008) SRIM—the stopping and range of ions in matter. Lulu Press Co., Morrisville, pp 1–398

    Google Scholar 

  33. Gibbons JF (1968) Proc IEEE 56:295

    Article  CAS  Google Scholar 

  34. Shulga VI (2018) Note on the artefacts in SRIM simulation of sputtering. Appl Surf Sci 439:456–461

    Article  CAS  Google Scholar 

  35. Hofsass H, Zhang K, Mutzke A (2014) Simulation of ion beam sputtering with SDTrimSP, TRIDYN and SRIM. Appl Surf Sci 310:134–141

    Article  Google Scholar 

  36. The stopping and range of Ions in Matter [online]. www.srim.org

  37. Schwörer R, Plank H, Roth J (1996) Surface modifications and erosion yields of silicon and titanium doped graphites due to low energy D+ bombardment. J Nucl Mater 230(3):208–213

    Article  Google Scholar 

  38. Yoon SJ, Lee IS (2002) J Appl Phys 91(4):2487–2492

    Article  CAS  Google Scholar 

  39. Elhaitamy O et al (2020) Monte Carlo simulations of noble gas ion beam sputtering yield of MgO, CaO, SrO, and BaO with various thin coatings in AC-PDP cells. Surf Interface Anal 52(3):84–90

    Article  CAS  Google Scholar 

  40. Jurado Vargas M, Fernandez Timon A, Garcia-Torano E, Martin Sanchez A (2004) Application of ion transport simulation to the backscattering in α particle sources. J Nucl Instrum Methods Phys B 213:129–133

    Article  Google Scholar 

  41. Pitchford LC, Wang J, Piscitelli D, Boeuf J-P (2006) IEEE Trans Plasma Sci 34:351

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. El Marsi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Marsi, M., Guennoun, A., Elhaitamy, O. et al. Monte Carlo simulations of MgO and complex oxide protective thin layers bombarded with noble-gas ion in plasma discharge devices. J Radioanal Nucl Chem 326, 1579–1588 (2020). https://doi.org/10.1007/s10967-020-07440-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07440-x

Keywords

Navigation