Spatial variation and radiocesium flux of litterfall in hardwood-pine mixed forest and cedar plantations based on long-term monitoring data


Long-term monitoring revealed that radiocesium (137Cs) deposition that fall from the canopy with litterfall was characterized by forest types, seasonal change, and canopy closure (CC). The sum of autumn and spring 137Cs deposition values divided by the sum of summer and winter tended to have higher values in the cedar forest. The angle of view α when the correlation between the CC size and litterfall amount is strongest, was 5° or less in the young cedar forest, but varied in the hardwood–pine mixed forest. This indicates the spatial distribution of 137Cs deposition has heterogeneity and homogeneity in each forest.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    Yoshihara T, Matsumura H, Hashida S, Nagaoka T (2013) Radiocesium contaminations of 20 wood species and the corresponding gamma-ray dose rates around the canopies at 5 months after the Fukushima nuclear power plant accident. J Environ Radioact 115:60–68

    CAS  Google Scholar 

  2. 2.

    Onda Y, Kato H, Loffredo N, Kawamori A, Hisasdome K (2016) Mapping project in Fukushima and related researches (11) Five-year monitoring study of radiocesium transfer in forest environments after the FDNPP accident. Fall Meeting, Atomic Energy Society of Japan, Fukuoka (in Japanese)

  3. 3.

    Kato H, Onda Y, Gomi T (2012) Interception of the Fukushima reactor accident-derived 137Cs, 134Cs and 131I by coniferous forest canopies. Geophys Res Lett 39:20403

    Google Scholar 

  4. 4.

    Bonnett PJP, Anderson MA (1993) Radiocaesium dynamics in a coniferous forest canopy: a mid-Eales case study. Sci Total Environ 136:259–277

    CAS  Google Scholar 

  5. 5.

    Thiry Y, Garcia-Sanchez L, Hurtevent P (2016) Experimental quantification of radiocesium recycling in a coniferous tree after aerial contamination: Field loss dynamics, translocation and final partitioning. J Environ Radioact 161:42–50

    CAS  Google Scholar 

  6. 6.

    Bunzl K, Schimmack W, Kreutzer K, Schierl R (1989) Interception and retention of Chernobyl-derived 134Cs, 137Cs and 106Ru in a spruce stand. Sci Total Environ 78:77–87

    CAS  Google Scholar 

  7. 7.

    Schimmack W, Förster H, Bunzl K, Kreutzer K (1993) Deposition of radiocesium to the soil by stemflow, throughfall and leaf-fall from beech trees. Radiat Environ Bioph 32:137–150

    CAS  Google Scholar 

  8. 8.

    Tikhomirov FA, Shcheglov AI (1994) Main investigation results on the forest radioecology in the Kyshtym and Chernobyl accident zones. Sci Total Environ 157:45–57

    CAS  Google Scholar 

  9. 9.

    Tanaka K, Iwatani H, Sakaguchi A, Takahashi Y, Onda Y (2013) Local distribution of radioactivity in tree leaves contaminated by the fallout of the radionuclides emitted from the Fukushima Daiichi Nuclear Power Plant. J Radioanal Nucl Chem 295:2007–2014

    CAS  Google Scholar 

  10. 10.

    Loffredo N, Onda Y, Kawamori A, Kato H (2014) Modeling of leachable 137Cs in throughfall and stemflow for Japanese forest canopies after Fukushima Daiichi Nuclear Power Plant accident. Sci Total Environ 493:701–707

    CAS  Google Scholar 

  11. 11.

    Loffredo N, Onda Y, Hurtevent P, Coppin F (2015) Equation to predict the 137Cs leaching dynamic from evergreen canopies after a radio-cesium deposit. J Environ Radioact 147:100–107

    CAS  Google Scholar 

  12. 12.

    Rafferty B, Brennan M, Dawson D, Dowding D (2000) Mechanisms of 137Cs Migration in coniferous forest soils. J Environ Radioact 48:131–143

    CAS  Google Scholar 

  13. 13.

    Bunzl K, Albers BP, Shimmack W, Rissanen K, Suomela M, Puhakainen M, Rahola T, Steinnes E (1999) Soil to plant uptake of fallout 137Cs by plants from boreal areas polluted by industrial emissions from smelters. Sci Total Environ 234:213–221

    CAS  Google Scholar 

  14. 14.

    Kato H, Onda Y, Hisadome K, Loffredo N, Kawamori A (2017) Temporal changes in radiocesium deposition in various forest stands following the Fukushima Dai-ichi Nuclear Power Plant accident. J Environ Radioact 166:449–457

    CAS  Google Scholar 

  15. 15.

    Teramage M, Onda Y, Kato H, Gomi T (2014) The role of litterfall in transferring Fukushima-derived radiocesium to a coniferous forest floor. Sci Total Environ 490:435–439

    CAS  Google Scholar 

  16. 16.

    Sakai M, Gomi T, Negishi JN, Iwamoto A, Okada K (2016) Different cesium-137 transfers to forest and stream ecosystems. Environ Pollut 209:46–52

    CAS  Google Scholar 

  17. 17.

    Lopez-Vicente M, Onda Y, Takahashi J, Kato H, Chayama S, Hisadome K (2018) Radiocesium concentrations in soil and leaf after decontamination practices in a forest plantation highly polluted by the Fukushima accident. Environ Pollut 239:448–456

    CAS  Google Scholar 

  18. 18.

    Hisadome K, Onda Y, Kawamori A, Kato H (2013) Migration of radiocaesium with litterfall in hardwood-Japanese red pine mixed forest and sugi plantation. J Jpn Forest Soc 95:267–274

    CAS  Google Scholar 

  19. 19.

    Coppin F, Hurtevent P, Loffredo N, Simonucci C, Julien A, Gonze M, Nanba K, Onda Y, Thiry Y (2016) Radiocaesium partitioning in Japanese cedar forests following the “early” phase of Fukushima fallout redistribution. Sci Rep 6:37618

    CAS  Google Scholar 

  20. 20.

    Pröhl G (2009) Interception of dry and wet deposited radionuclides by vegetation. J Environ Radioact 100:675–682

    Google Scholar 

  21. 21.

    Calmon P, Gonze M-A, Mourlon Ch (2015) Modeling the early-phase redistribution of radiocesium fallouts in an evergreen coniferous forest after Chernobyl and Fukushima accidents. Sci Total Environ 529:30–39

    CAS  Google Scholar 

  22. 22.

    Yoschenko V, Takase T, Konoplev A, Nanba K, Onda Y, Kivva S, Zheleznyak M, Sato N, Keitoku K (2017) Radiocesium distribution and fluxes in the typical Cryptomeria japonica forest at the late stage after the accident at Fukushima Dai-Ichi Nuclear Power Plant. J Environ Radioact 166:45–55

    CAS  Google Scholar 

  23. 23.

    Takada M, Yamada T, Takahara T, Okuda T (2016) Spatial variation in the 137Cs inventory in soils in a mixed deciduous forest in Fukushima, Japan. J Environ Radioact 161:35–41

    CAS  Google Scholar 

  24. 24.

    Kato H, Onda Y, Wakahara T, Kawamori A (2018) Spatial pattern of atmospherically deposited radiocesium on the forest floor in the early phase of the Fukushima Daiichi Nuclear Power Plant accident. Sci Total Environ 615:187–196

    CAS  Google Scholar 

  25. 25.

    Yoshihara T, Hashida S, Abe K, Ajito H (2014) A time dependent behavior of radiocesium from the Fukushima fallout in litterfalls of Japanese flowering cherry trees. J Environ Radioact 127:34–39

    CAS  Google Scholar 

  26. 26.

    Endo I, Ohte N, Iseda K, Tanoi K, Hirose A, Kobayashi NI, Murakami M, Tokuchi N, Ohashi M (2015) Estimation of radioactive 137-cesium transportation by litterfall, stemflow and throughfall in the forests of Fukushima. J Environ Radioact 149:176–185

    CAS  Google Scholar 

  27. 27.

    Niizato T, Abe H, Mitachi K, Sasaki Y, Ishii Y, Watanabe T (2016) Input and output budgets of radiocesium concerning the forest floor in the mountain forest of Fukushima released from the TEPCO’s Fukushima Dai-ichi nuclear power plant accident. J Environ Radioact 161:11–21

    CAS  Google Scholar 

  28. 28.

    Fukushima Prefecture Agriculture, Forestry and Fisheries Department (2017) Fukushima Prefecture Forest and Forestry Statistics (in Japanese)

  29. 29.

    Nakane K (1995) Soil carbon cycling in a Japanese cedar (Cryptomeria japonica) plantation. Forest Ecol Manag 72:185–197

    Google Scholar 

  30. 30.

    Miura S (2000) Proposal for a new definition to evaluate the status of forest floor cover and floor cover percentage (FCP) from the viewpoint of the protection against raindrop splash. J Jpn Forest Soc 82:132–140

    CAS  Google Scholar 

  31. 31.

    Yoshihara T, Matsumura H, Hashida S, Nakaya K (2016) Radiocesium contamination in living and dead foliar parts of Japanese cedar during 2011–2015. J Environ Radioact 164:291–299

    CAS  Google Scholar 

  32. 32.

    Kato H, Onda Y, Saidin ZH, Sakashita W, Hisadome K, Loffredo N (2018) Six-year monitoring study of radiocesium transfer in forest environments following the Fukushima nuclear power plant accident. J Environ Radioact 210:105817

    Google Scholar 

  33. 33.

    Nishikiori T, Watanabe M, Koshikawa MK, Watanabe L, Yamamura S, Hayashi S (2019) 137Cs transfer from canopies onto forest floors at Mount Tsukuba in the four years following the Fukushima nuclear accident. Sci Total Environ 659:783–789

    CAS  Google Scholar 

  34. 34.

    Naoe S, Abe M, Tanaka H, Akama A, Takano T, Yamazaki Y, Fujitsu A, Harasawa S, Masaki T (2017) Effects of the Slope Aspect and Leaf Mass on the Radiocesium Spatial Distribution of Fallen Leaves of Quercus serrata. J Jap Forest Soc 99:34–40

    Google Scholar 

  35. 35.

    Iwagami S, Onda Y, Tsujimura M, Hada M, Pun I (2017) Vertical distribution and temporal dynamics of dissolved 137Cs concentrations in soil water after the Fukushima Dai-ichi Nuclear Power Plant accident. Environ Pollut 230:1090–1098

    CAS  Google Scholar 

  36. 36.

    Takahashi J, Onda Y, Hihara D, Tamura K (2019) Six-year monitoring of the vertical distribution of radiocesium in three forest soils after the Fukushima Dai-ichi Nuclear Power Plant accident. J Environ Radioact 210:105811

    CAS  Google Scholar 

  37. 37.

    Ministry of Education, Culture, Sports, Science and Technology (MEXT) (2011) Results of the Third Airborne Monitoring Survey by the MEXT, July 2011. Accessed 20 Aug 2018 (in Japanese)

  38. 38.

    Kato H, Onda Y, Gao X, Sanada Y, Saito K (2019) Reconstruction of a Fukushima accident-derived radiocesium fallout map for environmental transfer studies. J Environ Radioact 210:105996

    CAS  Google Scholar 

  39. 39.

    Takenaka A (February 2009) CanopOn 2, Accessed 19 Aug 2018 (in Japanese)

  40. 40.

    Japan Meteorological Agency (JMA) (2018) Search past weather data. Accessed 10 Jun 2018 (in Japanese)

  41. 41.

    Abe T, Sakamoto T, Tanaka H, Nobuhiro T, Kabeya N, Hagino H (2006) Application of a simple physical model to leaf-litter dispersal in riparian forest. Ecol Civ Eng 8:147–156

    Google Scholar 

  42. 42.

    Kanasashi T, Hattori S (2011) Seasonal variation in leaf-litter input and leaf dispersal distances to streams: the effect of converting broadleaf riparian zones to conifer plantations in central Japan. Hydrobiologia 661:145–161

    Google Scholar 

  43. 43.

    Ministry of the Environment in Japan (MOE) (2017) The Survey Project of Forest (Interim report), 18th Environmental recovery Study Group, December 2017. Accessed 19 Aug 2018 (in Japanese)

  44. 44.

    Chen JM, Black TA, Adams RS (1991) Evaluation of hemispherical photography for determining plant area index and geometry of a forest stand. Agric Forest Meteorol 56:129–143

    CAS  Google Scholar 

Download references


This study includes data obtained through the Ministry of Education, Culture, Sports, Science and Technology Science and Technology Strategy Promotion Fund (2011–2012), Nuclear Regulation Authority consignment project (2012–2013), and a Japan Atomic Energy Agency-commissioned project (2014–2015).

Author information



Corresponding author

Correspondence to Keigo Hisadome.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hisadome, K., Onda, Y., Loffredo, N. et al. Spatial variation and radiocesium flux of litterfall in hardwood-pine mixed forest and cedar plantations based on long-term monitoring data. J Radioanal Nucl Chem 326, 1491–1504 (2020).

Download citation


  • Radiocesium concentration
  • Radiocesium deposition
  • Litterfall amount
  • Canopy closure
  • Seasonal change