Skip to main content
Log in

Assessment of geogenic radon potential in Johor Malaysia

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

An evaluation of the geogenic radon potential (GRP) of Johor state, Malaysia was conducted, using field measured data of radon activity concentration in soil gas and the soil gas permeability. The highest GRP value of 53.67 was obtained in the southernmost part of this study location. Kruskal–Wallis test on the median values of GRP data, reveals a statistically significant difference between the soil types and geological formations, with p = 0.018 and p = 0.046, respectively. The first radon potential map of Johor state is established, and three GRP hotspots were identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cinelli G, Tositti L, Capaccioni B et al (2015) Soil gas radon assessment and development of a radon risk map in Bolsena, Central Italy. Environ Geochem Health 37:305–319. https://doi.org/10.1007/s10653-014-9649-9

    Article  CAS  Google Scholar 

  2. UNSCEAR (2008) Sources and effects of ionizing radiation. https://www.unscear.org/docs/reports/2008/11-80076_Report_2008_Annex_D.pdf

  3. WHO (2009) WHO handbook on indoor radon: a public health perspective. https://apps.who.int/iris/bitstream/handle/10665/44149/9789241547673_eng.pdf?sequence=1

  4. Szabó KZ, Jordan G, Horváth Á et al (2014) Mapping the geogenic radon potential: methodology and spatial analysis for central Hungary. J Environ Radioact 129:107–120. https://doi.org/10.1016/j.jenvrad.2013.12.009

    Article  CAS  Google Scholar 

  5. Bossew P (2014) Determination of radon prone areas by optimized binary classification. J Environ Radioact 129:121–132. https://doi.org/10.1016/j.jenvrad.2013.12.015

    Article  CAS  Google Scholar 

  6. ICRP (1993) Protection against radon-222 at home and at work. Ann ICRP. https://doi.org/10.1016/0146-6453(93)90001-O

    Article  Google Scholar 

  7. Kemski J, Siehl A, Stegemann R, Valdivia-Manchego M (2001) Mapping the geogenic radon potential in Germany. Sci Total Environ 272:217–230. https://doi.org/10.1016/S0048-9697(01)00696-9

    Article  CAS  Google Scholar 

  8. Kemski J, Klingel AR, Siehl AAA et al (2009) From radon hazard to risk prediction-based on geological maps, soil gas and indoor measurements in Germany. Environ Geol 56:1269–1279. https://doi.org/10.1007/s00254-008-1226-z

    Article  CAS  Google Scholar 

  9. Ielsch G, Cushing MEEE, Combes P, Cuney M (2010) Mapping of the geogenic radon potential in france to improve radon risk management: methodology and first application to region Bourgogne. J Environ Radioact 101:813–820. https://doi.org/10.1016/j.jenvrad.2010.04.006

    Article  CAS  Google Scholar 

  10. Miles JCHH, Appleton JD (2005) Mapping variation in radon potential both between and within geological units. J Radiol Prot 25:257–276. https://doi.org/10.1088/0952-4746/25/3/003

    Article  CAS  Google Scholar 

  11. García-Talavera M, García-Pérez A, Rey C, Ramos L (2013) Mapping radon-prone areas using gamma-radiation dose rate and geological information. J Radiol Prot 33:605–620. https://doi.org/10.1088/0952-4746/33/3/605

    Article  CAS  Google Scholar 

  12. Sainz C, Andez F, Quind OS, Poncela LS et al (2017) Spanish experience on the design of radon surveys based on the use of geogenic information. J Environ Radioact 166:390–397. https://doi.org/10.1016/j.jenvrad.2016.07.007

    Article  CAS  Google Scholar 

  13. Nazaroff WWW, Moed BAA, Sextro RGG (1988) Soil as a source of indoor radon, generation, migration, and entry. In: Radon and its decay products in indoor W.W. Nazaroff, A.V. Nero Jr, pp 57–112

  14. Kardos R, Gregorič A, Jónás J et al (2015) Dependence of Radon Emanation of Soil on Lithology. J Radioanal Nucl Chem 304:1321–1327. https://doi.org/10.1007/s10967-015-3954-3

    Article  CAS  Google Scholar 

  15. Liu H, Wang N, Chu X et al (2016) Mapping radon hazard areas using238U measurements and geological units: a study in a high background radiation city of China. J Radioanal Nucl Chem 309:1209–1215. https://doi.org/10.1007/s10967-016-4717-5

    Article  CAS  Google Scholar 

  16. Mose DG, Mushrush GW, Chrosniak CE (1992) Soil radon, permeability, and indoor radon prediction. Environ Geol Water Sci 19(2):91–96

    Article  CAS  Google Scholar 

  17. Alonso H, Rubiano JGGG, Guerra JGGG et al (2019) Assessment of radon risk areas in the Eastern Canary Islands using soil radon gas concentration and gas permeability of soils. Sci Total Environ 664:449–460. https://doi.org/10.1016/j.scitotenv.2019.01.411

    Article  CAS  Google Scholar 

  18. Andersen CE (1999) Numerical modelling of radon-222 entry into houses: an outline of techniques and results. In: Science of the Total Environment, pp 33–42

  19. Benavente D, Valdés-Abellán J, Pla C, Sanz-Rubio E (2019) Estimation of soil gas permeability for assessing radon risk using Rosetta pedotransfer function based on soil texture and water content. J Environ Radioact. https://doi.org/10.1016/j.jenvrad.2019.105992

    Article  Google Scholar 

  20. Menetrez MY, Mosley RB, Snoddy R, Brubaker SA (1997) Evaluation of radon emanation from soil with varying moisture content in a soil chamber. In: Environment international

  21. Johner HUUU, Surbeck H (2001) Soil gas measurements below foundation depth improve indoor radon prediction. Elsevier, New York

    Book  Google Scholar 

  22. Wiegand J (2001) A guideline for the evaluation of the soil radon potential based on geogenic and anthropogenic parameters. Environ Geol 40:949–963. https://doi.org/10.1007/s002540100287

    Article  CAS  Google Scholar 

  23. Bossew P, Tollefsen T, Gruber V (2013) The european radon mapping project. IX Lat Am IRPA Reg Congr Radiat Prot Saf IRPA. https://doi.org/10.1088/0952-47/33/1/51

    Article  Google Scholar 

  24. Saleh MA, Ramli AT, Hamzah K et al (2015) Prediction of terrestrial gamma dose rate based on geological formations and soil types in the Johor State, Malaysia. J Environ Radioact 148:111–122. https://doi.org/10.1016/j.jenvrad.2015.05.019

    Article  CAS  Google Scholar 

  25. Johor State Forestry Department (2006) Summary of the State of Johor Forest Management Plan. https://johor.forestry.gov.my/images/Maklumat-Hutan/MC-and-I/2.Ringkasan-Rancangan-Pengurusan-Hutan-RPH/fmu.pdf

  26. Ramli AT, Hussein AWMAA, Lee MH (2001) Geological influence on terrestrial gamma radiation dose rate in the Malaysian State of Johore. Appl Radiat Isot 54:327–333. https://doi.org/10.1016/S0969-8043(00)00103-2

    Article  CAS  Google Scholar 

  27. Director-General of Geological survey Malaysia (1985) Geological Map of Peninsular Malaysia

  28. Ministry of Agriculture peninsular Malaysia (1973) Map of soil types in Peninsular Malaysia. Dep. Agric. Penins. Malaysia Sheet

  29. Neznal M, Neznal M, Matolín M et al (2004) The new method for assessing the radon risk of building sites. Czech Geol Surv Spec Pap 47. https://doi.org/10.1038/206014c0

  30. Piller G, Johner HU (1998) Classification of radon areas in Switzerland. In: Radiation Protection Dosimetry

  31. Neznal MM, Neznal MM (2005) Permeability as an important parameter for radon risk classification of foundation soils. Ann Geophys 48:175–180. https://doi.org/10.4401/ag-3192

    Article  Google Scholar 

  32. UNSCEAR (2000) Report of the United Nations Scientific Committee on the effects of atomic radiation to the general assembly

Download references

Acknowledgements

The authors would like to thank Ministry of Education Malaysia and Universiti Teknologi Malaysia for their support through research grant Q.J3000.2546.19h71 and UTMSHINE Signature Grant (No. 07G90) and Fundamental Research Grant Scheme (No. 5F222).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Haruna.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haruna, R., Saleh, M.A., Hashim, S. et al. Assessment of geogenic radon potential in Johor Malaysia. J Radioanal Nucl Chem 326, 1065–1074 (2020). https://doi.org/10.1007/s10967-020-07396-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07396-y

Keywords

Navigation