Skip to main content
Log in

Natural uranium isotopes and 226Ra in surface and groundwater from a basin of a semiarid region in Brazil

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

A Correction to this article was published on 02 June 2021

This article has been updated

Abstract

This research aimed to get information about the uranium and radium activity concentrations in surface and ground water in a semiarid region in Brazil. Mean (and range) activity of 0.46 (0.01–1.8), 0.015 (0.0004–0.066) and 0.32 (0.09–1.32) Bq L− 1 were found for 234U, 235U and 238U, respectively. Uranium radioisotopes account for the higher radioactivity in surface and groundwater, 226Ra was found only in few groundwater samples (0.09–0.61 Bq L− 1). 226Ra/238U (0.15–0.43) and 234U/238U (1.18–1.86) activity ratios are indicative of radioactive disequilibrium in groundwater. Expected effective doses from few water sources can be considered significant if untreated water is used for drinking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

References

  1. UNSCEAR (2000) Sources and effects of ionizing radiation. Volume I: sources. United Nations Scientific Committee on the Effects of Atomic Radiation, New York. http://www.unscear.org/unscear/en/publications/2000_1.html. Accessed 18 Sep 2019

  2. Chen J (2018) A summary of natural radionuclides in canadian public water supply systems. Radiat Environ Med 7:9–11

    Google Scholar 

  3. Chau ND, Dulinski M, Jodlowski P, Nowak J, Rozanski K, Sleziak M, Wachniew P (2011) Natural radioactivity in groundwater, a review. Isot Environ Health Stud 47:415–437

    Article  Google Scholar 

  4. Osmond JK, Cowart JB (1992) Groundwater. In: Ivanovich M, Harmon RS (eds) Uranium-series disequilibrium applications to earth, marine and environmental sciences, 2nd edn. Oxford Science Publications, Oxford

    Google Scholar 

  5. Priestley SC, Payne E, Harrison TE, Post JJ, Shand VEA, Love P, Wohling AJDL (2018) Use of U-isotopes in exploring groundwater flow and inter-aquifer leakage in the south-western margin of the Great Artesian Basin and Arckaringa Basin, central Australia. Appl Geochem. https://doi.org/10.1016/j.apgeochem.2018.10.002

    Article  Google Scholar 

  6. Liu C, Hub B, Jianbo J, Li J, Zhang X, Chen H (2011) Determination of uranium isotopic ratio (235U/238U) using extractive electrospray ionization tandem mass spectrometry. J Anal At Spectrom 26:2045–2051

    Article  CAS  Google Scholar 

  7. Bross R, Turpin L, Gauthier-Lafaye F, Holliger P, Siller P (1972) Ocurrence of naturally enriched 235U: implications for plutonium behaviour in natural environments. Geochim Cosmochim Acta 57:1351–1356

    Article  Google Scholar 

  8. Donohue D (2002) Highly selctive and sensitive analytical measurements of trace nuclear materials ensure that secret nuclear activities are not overlooked by inspectors. Anal Chem. https://doi.org/10.1021/ac021909y

    Article  PubMed  Google Scholar 

  9. Banner JL, Wasserburg GJ, Chen JH, Moore CH (1990) 234U_238U_230Th_232Th systematics in saline groundwaters from central Missouri. Earth Planet Sci Lett 101:296–312

    Article  CAS  Google Scholar 

  10. Chkir N, Guendouz A, Zouari K, Ammar FH, Moulla AS (2009) Uranium isotopes in groundwater from the continental intercalaire aquifer in Algerian Tunisian Sahara (North Africa). J Environ Radioact 100:649–656

    Article  CAS  Google Scholar 

  11. Cizdziel J, Farmer D, Hodge V, Lindley K, Stetzenbach K (2005) 234U/238U isotope ratios in groundwater from Southern Nevada: a comparison of alpha counting and magnetic sector ICP-MS. Sci Total Environ 350:248–260

    Article  CAS  Google Scholar 

  12. Stacey CP, Timothy EP, Jennifer JH, Vincent EAP, Paul S, Andrew JL, Daniel LW (2018) Use of U-isotopes in exploring groundwater flow and inter-aquifer leakage in the south-western margin of the Great Artesian Basin and Arckaringa Basin, central Australia. Appl Geochem 98:331–344

    Article  Google Scholar 

  13. Kigoshi K (1971) Alpha-recoil 234Th: dissolution into water and the 234U/238 U disequilibrium in nature. Science 173:47–48

    Article  CAS  Google Scholar 

  14. Ivanovich M (1994) Uranium series disequilibrium: concepts and applications. Radiochim Acta 64:81

    Article  CAS  Google Scholar 

  15. Kurttio P, Auvinen A, Salonen L, Saha H, Pekkanen J, Mäkeläinen I, Väisänen SB, Penttilä IM, Komulainen H (2002) Renal effects of uranium in drinking water. Environ Health Perspect. https://doi.org/10.1289/ehp.02110337

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sheppard SC, Sheppard MI, Gallerand MO, Sanipell B (2005) Derivation of ecotoxicity thresholds for uranium. J Environ Radioact 79:55–83

    Article  Google Scholar 

  17. Stehney AF, Lucas HF (1955) Studies on the radium content of humans arising from the natural radium of their environment. In: Proceedings of the international conference on peaceful uses of atomic energy. New York, NY: United Nations, pp 1–13

  18. WHO (2011) Guidelines for drinking-water quality: fourth edition incorporating the first addendum, 4th edn. World Health Organization, Geneva

    Google Scholar 

  19. Kurttio P, Komulainen H, Leino A, Salonen L, Auvinen A, Saha H (2005) Bone as a possible target of chemical toxicity of natural uranium in drinking water. Environ Health Perspect. https://doi.org/10.1289/ehp.7475

    Article  PubMed  Google Scholar 

  20. Prat O, Vercouter T, Ansoborlo E, Fichet P, Perret P, Kurttio P, Salonen L (2009) Uranium speciation in drinking water from drilled wells in southern Finland and its potential links to health effects. Environ Sci Technol. https://doi.org/10.1021/es803658e

    Article  PubMed  Google Scholar 

  21. Canu IG, Laurent O, Pires N, Laurirer D, Dublineau I (2011) Health Effects of naturally radioactive water ingestion: the need for enhanced studies. Environ Health Perspect. https://doi.org/10.1289/ehp.1003224

    Article  PubMed  PubMed Central  Google Scholar 

  22. WHO (2018) Management of radioactivity in drinking-water. Geneva: World Health Organization. Licence: CC BY-NC-SA 3.0 IGO

  23. Malanca A, Repetti M, de Macêdo HR (1998) Gross Alpha and Beta activities in Surface and Ground Water of Rio Grande do Norte, Brazil. Appl Radiat Isot 49:893–898

    Article  CAS  Google Scholar 

  24. Godoy J, Godoy ML (2006) Natural radioactivity in brazilian groundwater. J Environ Radioact 85:71–83

    Article  CAS  Google Scholar 

  25. Silva Filho CA, França EJ (2013) Radioactive risk evaluation of mineral water in the Metropolitan Region of Recife, Northeastern Brazil. J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-012-1993-6

    Article  Google Scholar 

  26. Moura JC (2009) Radioactive pegmatites of the Parelhas region, Rio Grande do Norte, northeast Brazil. Preliminary investigation on radiominerals and radioactive minerals. International nuclear atlantic conference—INAC 2009, Rio de Janeiro, RJ, Brazil, September 27 to October 2, 2009. ISBN: 978-85-99141-03-8

  27. ANA (2012) A Questão da Água no Nordeste. Centro de Gestão e Estudos Estratégicos. Agência Nacional De Águas. CGEE, Brasília

    Google Scholar 

  28. Trolei A, Silva B (2018) Os recursos hídricos do Rio Grande do Norte: uma análise da vulnerabilidade territorial ao colapso no abastecimento de água. Confins. https://doi.org/10.4000/confins.12901

  29. Costa A, Melo JG, Silva FM (2006) Aspectos da salinização das águas do aquifero cristalino no estado do Rio Grande do Norte, nordeste do Basil. Águassubterrâneas 20:67–82

    Google Scholar 

  30. Rojas LV, Santos Junior JA, Corcho-Alvarado JA, Santos Amaral R, Röllin S, Milan MO, Herrero ZF, Francis K, Cavalcanti M, Santos JM (2020) Quality and management status of the drinking water supplies in a semiarid region of Northeastern Brazil. J Environ Sci Health Part A. https://doi.org/10.1080/10934529.2020.1782668

    Article  Google Scholar 

  31. Corcho Alvarado JA, Balsiger B, Rollin S, Jakob A, Burger M (2014) Radioactive and chemical contamination of the water resources in the former uranium mining and milling sites of Mailuu Suu (Kyrgyzstan). J Environ Radioact 138:1–10

    Article  CAS  Google Scholar 

  32. Lauria DC, Almeida RM, Sracek O (2004) Behavior of radium, thorium and uranium in groundwater near the Buena Lagoon in the Coastal Zone of the State of Rio de Janeiro. Br Environ Geol 47:11–19. https://doi.org/10.1007/s00254-004-1121-1

    Article  CAS  Google Scholar 

  33. Bonotto DM (2004) Doses from 222Rn, 226Ra, and 228Ra in groundwater from Guarani aquifer, South America. J Environ Radioact 76:319–335

    Article  CAS  Google Scholar 

  34. Bonotto DM, Bueno TO (2008) The natural radioactivity in Guarani aquifer groundwater, Brazil. AppRadiatIsot 66:1507–1522

    CAS  Google Scholar 

  35. Bonotto DM (2011) Natural radionuclides in major aquifer systems of the Parana sedimentary basin, Brazil. Appl Radiat lsot 69:1572–1584

    Article  CAS  Google Scholar 

  36. Erika R, Leila SM (2008) Uranium series disequilibria in ground waters from a fractured bedrock aquifer (Morungaba Granitoids—Southern Brazil): implications to the hydrochemical behavior of dissolved U and Ra. Appl Radiat lsot 66:1531–1542

    Article  Google Scholar 

  37. Bonotto DM (2016) The dissolved uranium concentration and 234U/238 U activity ratio in groundwaters from spas of southeastern Brazil. J Environ Radioact. https://doi.org/10.1016/j.jenvrad.2016.03.009

    Article  PubMed  Google Scholar 

  38. Szabo Z, Depaul VT, Fischer JM, Kraemer TF, Jacobsen E (2012) Occurrence and geochemistry of radium in water from principal drinking-water aquifer systems of the United States. Appl Geochem 27:729–752

    Article  CAS  Google Scholar 

  39. Chapman D (1996) Water quality assessments—a guide to use of Biota, sediments and water in environmental monitoring, 2nd edn. Published by F & FN Spon, London

  40. Ueda S, Hasegawa H, Takahu Y, Kondo K (2003) Behavior of uranium undervariousredox conditionsin a shallow brackish lake. J Radioanal Nucl Chem 256:247–252

    Article  CAS  Google Scholar 

  41. Chau ND, Dulinski M, Jodlowski P, Nowak J, Rozanski K, Sleziak M, Wachniew P (2011) Natural radioactivity in groundwater, a review. Isot Environ Health Stud. https://doi.org/10.1080/10256016.2011.628123

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) of Brazil and The World Academy of Science (TWAS) under Grant CNPq/TWS Number 190692/2015-4.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Lino Valcarcel Rojas, José Araújo dos Santos Júnior, José Antonio Corcho Alvarado, Marvic Ortueta Milan and Stefan Röllin. The first draft of the manuscript was written by Lino Valcarcel Rojas and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Lino Valcarcel Rojas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rojas, L.V., dos Santos Júnior, J.A., Alvarado, J.A.C. et al. Natural uranium isotopes and 226Ra in surface and groundwater from a basin of a semiarid region in Brazil. J Radioanal Nucl Chem 326, 1081–1089 (2020). https://doi.org/10.1007/s10967-020-07393-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07393-1

Keywords

Navigation