Skip to main content
Log in

Preparation of magnetic biomass-carbon aerogel and its application for adsorption of uranium(VI)

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Magnetic carbon aerogels were prepared from inexpensive and readily available winter melon to adsorb U(VI). The morphology, structure, magnetism, characteristic functional groups and chemical bonds of magnetic carbon aerogels were characterized by TEM, SEM, XRD, BET, VSM, FT-IR, XPS. Under the condition of 303 K and pH 6, magnetic carbon aerogel reached adsorption equilibrium within 120 min, with the adsorption capacity of 230.3 mg g–1, much higher than that of carbon aerogel (77.9 mg g–1), which is the function of Fe–O. The good magnetism of magnetic carbon aerogels allows it to be easily separated from the solution by applying magnetic field. The adsorption isotherm data accord with Langmuir isothermal model. Adsorption is a spontaneous and endothermic process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Liao Y, Wang M, Chen DJ (2018) Preparation of polydopamine-modified graphene oxide/chitosan aerogel for uranium(VI) adsorption. Ind Eng Chem Res 57(25):8472–8483

    CAS  Google Scholar 

  2. Liu Y, Yang PF, Li Q, Liu Y, Yin J (2019) Preparation of FeS@Fe3O4 core–shell magnetic nanoparticles and their application in uranyl ions removal from aqueous solution. J Radioanal Nucl Chem 321(2):499–510

    CAS  Google Scholar 

  3. Xu YH, Ke GJ, Yin J, Lei WR, Yang PF (2019) Synthesis of thiol-functionalized hydrotalcite and its application for adsorption of uranium(VI). J Radioanal Nucl Chem 319(3):791–803

    CAS  Google Scholar 

  4. Chen LL, Feng SJ, Zhao DL, Chen SH, Li FF, Chen CL (2017) Efficient sorption and reduction of U(VI) on zero-valent iron-polyaniline-graphene aerogel ternary composite. J Colloid Interface Sci 490:197–206

    CAS  Google Scholar 

  5. Zhang H, Dai ZR, Sui Y, Xue JH, Ding DX (2018) Adsorption of U(VI) from aqueous solution by magnetic core-dual shell Fe3O4@PDA@TiO2. J Radioanal Nucl Chem 317(1):613–624

    CAS  Google Scholar 

  6. Kanematsu M, Perdrial N, Um W, Chorover J, O'Day PA (2014) Influence of phosphate and silica on U(VI) precipitation from acidic and neutralized wastewaters. Environ Sci Technol 48(11):6097–6106

    CAS  Google Scholar 

  7. Amaral J, Morais CA (2010) Thorium and uranium extraction from rare earth elements in monazite sulfuric acid liquor through solvent extraction. Miner Eng 23(6):498–503

    CAS  Google Scholar 

  8. Zhou C, Ontiveros-Valencia A, de St Cyr LC, Zevin AS, Carey SE, Krajmalnik-Brown R, Rittmann BE (2014) Uranium removal and microbial community in a H-2-based membrane biofilm reactor. Water Res 64:255–264

    CAS  Google Scholar 

  9. Tavakoli H, Sepehrian H, Semnani F, Samadfam M (2013) Recovery of uranium from UCF liquid waste by anion exchange resin CG-400: breakthrough curves, elution behavior and modeling studies. Ann Nucl Energy 54:149–153

    CAS  Google Scholar 

  10. Liu N, Wang YF, He CH (2016) Tetraphenylimidodiphosphinate as solid phase extractant for preconcentrative separation of thorium from aqueous solution. J Radioanal Nucl Chem 308(2):393–401

    CAS  Google Scholar 

  11. Li JX, Yang PF, Zhu CX, Qiao WX, Ke GJ, Liu Y (2019) Preparation of sulfhydryl functionalized magnetic SBA-15 and its high-efficiency adsorption on uranyl ion in solution. Environ Sci Pollut Res 26(33):34487–34498

    Google Scholar 

  12. Saleh TA, Naeemullah TM, Sari A (2017) Polyethylenimine modified activated carbon as novel magnetic adsorbent for the removal of uranium from aqueous solution. Chem Eng Res Des 117:218–227

    CAS  Google Scholar 

  13. Wang GH, Wang XG, Chai XJ, Liu JS, Deng NS (2010) Adsorption of uranium(VI) from aqueous solution on calcined and acid-activated kaolin. Appl Clay Sci 47(3–4):448–451

    CAS  Google Scholar 

  14. Dolatyari L, Yaftian MR, Rostamnia S (2016) Removal of uranium(VI) ions from aqueous solutions using Schiff base functionalized SBA-15 mesoporous silica materials. J Environ Manag 169:8–17

    CAS  Google Scholar 

  15. Zhou LM, Shang C, Liu ZR, Huang GL, Adesina AA (2012) Selective adsorption of uranium(VI) from aqueous solutions using the ion-imprinted magnetic chitosan resins. J Colloid Interface Sci 366(1):165–172

    CAS  Google Scholar 

  16. Song Q, Ma LJ, Liu J, Bai CY, Geng JX, Wang H, Li B, Wang LY, Li SJ (2012) Preparation and adsorption performance of 5-azacytosine-functionalized hydrothermal carbon for selective solid-phase extraction of uranium. J Colloid Interface Sci 386:291–299

    CAS  Google Scholar 

  17. Chien HC, Cheng WY, Wang YH, Lu SY (2012) Ultrahigh specific capacitances for supercapacitors achieved by nickel cobaltite/carbon aerogel composites. Adv Funct Mater 22(23):5038–5043

    CAS  Google Scholar 

  18. Wang YJ, Zhao GH, Chai SN, Zhao HY, Wang YB (2013) Three-dimensional homogeneous ferrite-carbon aerogel: one pot fabrication and enhanced electro-fenton reactivity. ACS Appl Mater Interfaces 5(3):842–852

    CAS  Google Scholar 

  19. Worsley MA, Satcher JH, Baumann TF (2008) Synthesis and characterization of monolithic carbon aerogel nanocomposites containing double-walled carbon nanotubes. Langmuir 24(17):9763–9766

    CAS  Google Scholar 

  20. Wei SL, Wu DC, Shang XL, Fu RW (2009) Studies on the structure and electrochemical performance of Pt/carbon aerogel catalyst for direct methanol fuel cells. Energy Fuels 23(1–2):908–911

    CAS  Google Scholar 

  21. Shanmugam P, Murthy AP, Theerthagiri J, Wei W, Madhavan J, Kim HS, Maiyalagan T, Xie JX (2019) Robust bifunctional catalytic activities of N-doped carbon aerogel-nickel composites for electrocatalytic hydrogen evolution and hydrogenation of nitrocompounds. Int J Hydrog Energy 44(26):13334–13344

    CAS  Google Scholar 

  22. Li Y, Li LY, Chen T, Duan T, Yao WT, Zheng K, Dai LC, Zhu WK (2018) Bioassembly of fungal hypha/graphene oxide aerogel as high performance adsorbents for U(VI) removal. Chem Eng J 347:407–414

    CAS  Google Scholar 

  23. Cui S, Wang X, Zhang X, Xia W, Tang XL, Lin BL, Wu Q, Zhang X, Shen XD (2018) Preparation of magnetic MnFe2O4-Cellulose aerogel composite and its kinetics and thermodynamics of Cu(II) adsorption. Cellulose 25(1):735–751

    CAS  Google Scholar 

  24. Cao YF, Xie LJ, Sun GH, Su FY, Kong QQ, Li F, Ma WP, Shi J, Jiang D, Lu CX, Chen CM (2018) Hollow carbon microtubes from kapok fiber: structural evolution and energy storage performance. Sustain Energ Fuels 2(2):455–465

    CAS  Google Scholar 

  25. Xin FE, Jia YF, Sun J, Dang LQ, Liu ZH, Lei ZB (2018) Enhancing the capacitive performance of carbonized wood by growing FeOOH nanosheets and poly(3,4-ethylenedioxythiophene) coating. ACS Appl Mater Interfaces 10(38):32192–32200

    CAS  Google Scholar 

  26. Wang K, Gao S, Du ZL, Yuan AB, Lu W, Chen LW (2016) MnO2-carbon nanotube composite for high-areal-density supercapacitors with high rate performance. J Power Sources 305:30–36

    CAS  Google Scholar 

  27. Wu XL, Jia WB (2014) Biomass-derived multifunctional magnetite carbon aerogel nanocomposites for recyclable sequestration of ionizable aromatic organic pollutants. Chem Eng J 245:210–216

    CAS  Google Scholar 

  28. Ai LH, Huang HY, Chen ZL, Wei X, Jiang J (2010) Activated carbon/CoFe2O4 composites: facile synthesis, magnetic performance and their potential application for the removal of malachite green from water. Chem Eng J 156(2):243–249

    CAS  Google Scholar 

  29. Li J, Zhang SW, Chen CL, Zhao GX, Yang X, Li JX, Wang XK (2012) Removal of Cu(II) and fulvic acid by graphene oxide nanosheets decorated with Fe3O4 nanoparticles. ACS Appl Mater Interfaces 4(9):4991–5000

    CAS  Google Scholar 

  30. Zhang M, Zhang XH, He XW, Chen LX, Zhang YK (2012) A self-assembled polydopamine film on the surface of magnetic nanoparticles for specific capture of protein. Nanoscale 4(10):3141–3147

    CAS  Google Scholar 

  31. Zong PF, Wang SF, Zhao YL, Wang H, Pan H, He CH (2013) Synthesis and application of magnetic graphene/iron oxides composite for the removal of U(VI) from aqueous solutions. Chem Eng J 220:45–52

    CAS  Google Scholar 

  32. Wang YH, Yu CM, Pan ZQ, Wang YF, Guo JW, Gu HY (2013) A gold electrode modified with hemoglobin and the chitosan@Fe3O4 nanocomposite particles for direct electrochemistry of hydrogen peroxide. Microchim Acta 180(7–8):659–667

    CAS  Google Scholar 

  33. Mohan D, Sarswat A, Singh VK, Alexandre-Franco M, Pittman CU (2011) Development of magnetic activated carbon from almond shells for trinitrophenol removal from water. Chem Eng J 172(2–3):1111–1125

    CAS  Google Scholar 

  34. Wu Q, Li W, Tan J, Nan X, Liu SX (2015) Hydrothermal synthesis of magnetic mesoporous carbon microspheres from carboxymethylcellulose and nickel acetate. Appl Surf Sci 332:354–361

    CAS  Google Scholar 

  35. Liu Z, Lv C, Tan XL (2013) One-pot synthesis of Fe, Co and Ni-doped carbon xerogels and their magnetic properties. J Phys Chem Solids 74(9):1275–1280

    CAS  Google Scholar 

  36. Duan SX, Liu X, Wang YN, Shao DD, Alharbi NS, Alsaedi A, Li JX (2016) Highly efficient entrapment of U(VI) by using porous magnetic Ni0.6Fe2.4O4 micro-particles as the adsorbent. J Taiwan Inst Chem Eng 65:367–377

    CAS  Google Scholar 

  37. Xiao J, Xie SL, Jing Y, Yao Y, Wang XQ, Jia YZ (2016) Preparation of halloysite@graphene oxide composite and its application for high-efficient decontamination of U(VI) from aqueous solution. J Mol Liq 220:304–310

    CAS  Google Scholar 

  38. Sun YB, Zhang R, Ding CC, Wang XX, Cheng WC, Chen CL, Wang XK (2016) Adsorption of U(VI) on sericite in the presence of Bacillus subtilis: a combined batch, EXAFS and modeling techniques. Geochim Cosmochim Acta 180:51–65

    CAS  Google Scholar 

  39. Saghatchi H, Ansari R, Mousavi HZ (2018) Highly efficient adsorptive removal of uranyl ions from aqueous solutions using dicalcium phosphate nanoparticles as a superabsorbent. Nucl Eng Technol 50(7):1112–1119

    CAS  Google Scholar 

  40. Budnyak TM, Strizhak AV, Gladysz-Plaska A, Sternik D, Komarov IV, Kolodynska D, Majdan M, Tertykh VA (2016) Silica with immobilized phosphinic acid-derivative for uranium extraction. J Hazard Mater 314:326–340

    CAS  Google Scholar 

  41. Yang PF, Xu YX, Yin N, Ai Y (2020) Preparation of uniform highly dispersed Mg–Al-LDHs and their adsorption performance for chloride ions. Ind Eng Chem Res 59(22):10697–10704

    CAS  Google Scholar 

  42. Liu CY, Liu HY, Xu AR, Tang KY, Huang Y, Lu C (2017) In situ reduced and assembled three-dimensional graphene aerogel for efficient dye removal. J Alloys Compd 714:522–529

    CAS  Google Scholar 

  43. Fan FL, Qin Z, Bai J, Rong WD, Fan FY, Tian W, Wu XL, Wang Y, Zhao L (2012) Rapid removal of uranium from aqueous solutions using magnetic Fe3O4@SiO2 composite particles. J Environ Radioact 106:40–46

    CAS  Google Scholar 

  44. Liao Y, Wang M, Chen DJ (2018) Production of three-dimensional porous polydopamine-functionalized attapulgite/chitosan aerogel for uranium(VI) adsorption. J Radioanal Nucl Chem 316(2):635–647

    CAS  Google Scholar 

  45. Ding CC, Cheng WC, Sun YB, Wang XK (2015) RETRACTED: Effects of Bacillus subtilis on the reduction of U(VI) by nano-Fe-0 (Retracted article. See, vol. 280, pg. 457, 2020). Geochim Cosmochim Acta 165:86–107.

  46. Shao L, Wang XF, Ren YM, Wang SF, Zhong JR, Chu MF, Tang H, Luo LZ, Xie DH (2016) Facile fabrication of magnetic cucurbit 6 uril/graphene oxide composite and application for uranium removal. Chem Eng J 286:311–319

    CAS  Google Scholar 

  47. Unlu N, Ersoz M (2006) Adsorption characteristics of heavy metal ions onto a low cost biopolymeric sorbent from aqueous solutions. J Hazard Mater 136(2):272–280

    Google Scholar 

  48. Chen LL, Zhao DL, Chen SH, Wang XB, Chen CL (2016) One-step fabrication of amino functionalized magnetic graphene oxide composite for uranium(VI) removal. J Colloid Interface Sci 472:99–107

    CAS  Google Scholar 

  49. Su J, Cao MH, Ren L, Hu CW (2011) Fe3O4-Graphene nanocomposites with improved Lithium storage and magnetism properties. J Phys Chem C 115(30):14469–14477

    CAS  Google Scholar 

  50. Lingamdinne LP, Choi YL, Kim IS, Yang JK, Koduru JR, Chang YY (2017) Preparation and characterization of porous reduced graphene oxide based inverse spinel nickel ferrite nanocomposite for adsorption removal of radionuclides. J Hazard Mater 326:145–156

    CAS  Google Scholar 

  51. Sun YB, Wang XX, Ding CC, Cheng WC, Chen CL, Hayat T, Alsaedi A, Hu J, Wang XK (2016) Direct synthesis of bacteria-derived carbonaceous nanofibers as a highly efficient material for radionuclides elimination. ACS Sustain Chem Eng 4(9):4608–4616

    CAS  Google Scholar 

  52. Kazy SK, D'Souza SF, Sar P (2009) Uranium and thorium sequestration by a Pseudomonas sp.: Mechanism and chemical characterization. J Hazard Mater 163(1):65–72

    CAS  Google Scholar 

  53. Cui LM, Wang YG, Gao L, Hu LH, Yan LG, Wei Q, Du B (2015) EDTA functionalized magnetic graphene oxide for removal of Pb(II), Hg(II) and Cu(II) in water treatment: Adsorption mechanism and separation property. Chem Eng J 281:1–10

    CAS  Google Scholar 

  54. Roonasi P, Holmgren A (2009) An ATR-FTIR study of sulphate sorption on magnetite; rate of adsorption, surface speciation, and effect of calcium ions. J Colloid Interface Sci 333(1):27–32

    CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Hunan Province Engineering Research Center of Radioactive Control Technology in Uranium Mining and Metallurgy and Hunan Province Engineering Technology Research Center of Uranium Tailings Treatment Technology, University of South China (2019YKZX1007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengfei Yang.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, N., Ai, Y., Xu, Y. et al. Preparation of magnetic biomass-carbon aerogel and its application for adsorption of uranium(VI). J Radioanal Nucl Chem 326, 1307–1321 (2020). https://doi.org/10.1007/s10967-020-07392-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07392-2

Keywords

Navigation