Skip to main content
Log in

Activity concentration of plutonium isotopes in bottom sediments and water in Crimean salt lakes

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The 238,239+240Pu activity concentrations in sediments and in water in the Crimean salt lakes were studied. Activity ratio of 238Pu/239+240Pu in depth profiles of sediments was used to estimate the contribution of two main sources of man-made plutonium to the Pu sediment inventory. The most part of the plutonium was of global origin. Concentration factor of the plutonium isotopes in sediments, radiocapacity factor of the lake, the type of biogeochemical behavior of plutonium in these reservoirs and the sediment inventory of 238,239+240Pu in the lakes were evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Warner F, Harrison RM (eds) (1993) Radioecology after Chernobyl: biogeochemical pathways of artificial radionuclides. Wiley, Chichester

    Google Scholar 

  2. Worldwide marine radioactivity studies (2005) Radionuclide levels in oceans and seas. IAEA, Vienna. IAEA-TECDOC-1429

  3. Polikarpov G, Egorov V, Gulin S, Stokozov N, Lazorenko G, Mirzoeva N, Tereshchenko N, Tsytsugina V, Kulebakina L, Popovichev V, Korotkov A, Evtushenko D, Zherko N, Malakhova L (2008) Radioecological response of the Black Sea to the Chernobyl accident. EKOSI-Gidrophisica, Sevastopol (in Russian)

    Google Scholar 

  4. Remeikis V, Gvozdaite R, Druteikiene R, Plukis A, Tarasiuk N, Špirkauskaite N (2005) Plutonium and americium in sediments of Lithuanian lakes. Nukleonika 50:61–66

    CAS  Google Scholar 

  5. Gudkov D, Kireev S, Nazarov A, Klenus V, Kaglyan A (2010) Radionuclides in ecosystems of ponds in the Chernobyl NPP exclusion zone. In: Romanenko VD (ed) Tecnogenic radionuclides in freshwater ecosystems. Naukova Dumka, Kiev (in Ukrainian)

    Google Scholar 

  6. Trapeznikov A, Molchanova I, Karavaeva E, Trapeznikova V (2007) Migration of radionuclides in freshwater and terrestrial ecosystems, vol I. Ural Univ. Publ, Hous, Ekaterinburg (in Russian)

    Google Scholar 

  7. Zheng J, Liao H, Wu F, Yamada M, Fu P, Liu C, Wan G (2008) Vertical distributions of 239+240Pu activity and 240Pu/239Pu atom ratio in sediment core of Lake Chenghai, SW China. J Radioanal Nucl Chem 275:37–42

    Article  CAS  Google Scholar 

  8. Oliferov A, Timchenko Z (2005) Rivers and Lakes of Crimea. Dolya, Simferopol (in Russian)

    Google Scholar 

  9. Pasynkov A, Sotskova L, Chaban V (2014) Ecological problems of conservation and use of balneological resources of salt lakes in the Crimea. Sci Notes Ttaurian Natl Univ Geogr 27:96–116 (in Russian)

    Google Scholar 

  10. Shadrin N (2008) The Crimean hypersaline lakes: general peculiarities. In: Tokarev Y, Finenko Z, Shadrin N (eds) The Black Sea microalgae: problems of biodiversity preservation and biotechnological usage. EKOSI-Gidrophisica, Sevastopol (in Russian)

    Google Scholar 

  11. Anufriieva E (2018) How can saline and hypersaline lakes contribute to aquaculture development? A review. J Oceanol Limnol 36:2002–2009. https://doi.org/10.1007/s00343-018-7306-3

    Article  CAS  Google Scholar 

  12. Tereshchenko N, Gulin S, Proskurnin V (2018) Distribution and migration of 239,240Pu in abiotic components of the Black Sea ecosystems during the post-Chernobyl period. J Environ Radioact. https://doi.org/10.1016/j.jenvrad.2017.10.002

    Article  PubMed  Google Scholar 

  13. Barjakhtar V (ed) (1995) Chernobyl accident. Naukova dumka, Kiev (in Russian)

    Google Scholar 

  14. Tereshchenko N, Proskurnin V, Paraskiv A, Chuzhikova-Proskurnina O (2018) Man-made plutonium radioisotopes in the salt lakes of the Crimean peninsula. Chin J Oceanol Limnol. https://doi.org/10.1007/s00343-018-7312-5

    Article  Google Scholar 

  15. La Rosa J, Gastaud J, Lagan L, Lee S-H, Levy-Palomo I, Povinec P, Wyse E (2005) Recent developments in the analysis of transuranics (Np, Pu, Am) in seawater. J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-005-0604-1

    Article  Google Scholar 

  16. Tereshchenko N (2008) Method of determination of transuranium elements (plutonium and americium) in the environment. Radioecological response of the Black Sea to the Chernobyl accident. In: Polikarpov GG, Egorov VN (eds) Radioecological response of the Black Sea to the Chernobyl accident. EKOSI-Gidrophisica, Sevastopol (in Russian)

    Google Scholar 

  17. Buesseler K, Livingston H (1996) In: Guẻguẻniat P, Germain P, Mẻtivier H (eds) Radionuclides in the ocean: inputs and inventories. IPSN, Cherbourg

    Google Scholar 

  18. Tereshchenko N, Proskurnin V, Gulin S, Paraskiv A (2018) Geochronological reconstruction of sedimentation flows of technogenic plutonium based on the radioisotope determination of the sedimentation rate of suspended matter in sediments on a half-century scale. In: Lisitsin AP (ed) The Black Sea System. Scientific World, Moscow. https://doi.org/10.29006/978-5-91522-473-4.2018.641(in Russian)

    Chapter  Google Scholar 

  19. Polikarpov G, Lazorenko G (1992) Role of bottom sediments of the Black Sea reduction and oxidation zones in the extraction of radionuclides from the water environment. In: Polikarpov GG (ed) Molismology of the Black Sea. Naukova Dumka, Kiev (in Russian)

    Google Scholar 

  20. Gulin S, Mirzoyeva N, Egorov V, Polikarpov G, Sidorov I, Proskurnin V (2013) Secondary radioactive contamination of the Black Sea after Chernobyl accident: recent levels, pathways and trends. J Environ Radioact 124:50–56

    Article  CAS  Google Scholar 

  21. Polikarpov G (ed) (1984) Marine radiochemoecology and problem of pollution. Naukova dumka, Berlin (in Russian)

    Google Scholar 

  22. Hardy E, Krey P, Nolchor H (1973) Global inventory and distribution of fallout plutonium. Nature 241:444–445

    Article  CAS  Google Scholar 

  23. Aarkrog A (1988) The radiological impact of the Chernobyl debris compared with that from nuclear weapons fallout. J Environ Radioact 6:151–162

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study of the Crimean salt lakes was supported by the Russian Scientific Foundation, Grant No. 18-16-00001 and the marine investigation was fulfilled within the framework of the state assignment of the IBSS of RAS No. AAAA-A18-118020890090-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nataliya N. Tereshchenko.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tereshchenko, N.N., Trapeznikov, A.V., Paraskiv, A.A. et al. Activity concentration of plutonium isotopes in bottom sediments and water in Crimean salt lakes. J Radioanal Nucl Chem 326, 1019–1025 (2020). https://doi.org/10.1007/s10967-020-07388-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07388-y

Keywords

Navigation