Skip to main content
Log in

A novel S-doped PB/GO nanocomposite for efficient adsorption and removal of cesium ions

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A novel sulfur-doped Prussian blue/graphene oxide (PB/GO-S) nanocomposite was designed and fabricated to remove cesium ions (Cs+) from water. Its maximum adsorption capacity was 175.72 mg g–1. And the adsorbent exhibited high selectivity to Cs+ in the presence of competing ions (sodium and potassium) and can reach adsorption equilibrium in less than 2 h. The adsorption behavior was consistent with Langmuir isotherm and pseudo-second-order kinetic model. In the adsorption process, both temperature and pH affect the adsorption performance, while the physical and chemical properties of the nanocomposite were stable in the pH range of 4–10.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Alby D, Charnay C, Heran M, Prelot B, Zajac J (2018) Recent developments in nanostructured inorganic materials for sorption of cesium and strontium: synthesis and shaping, sorption capacity, mechanisms, and selectivity-a review. J Hazard Mater 344:511–530. https://doi.org/10.1016/j.jhazmat.2017.10.047

    Article  CAS  Google Scholar 

  2. He Y-R, Yang Y, Huang Z-Y, Wang W-J, Li X-L, Zhang P-H, Tan Z-Y, Zhang D (2017) One-pot fabrication of ferric ferrocyanide functionalized graphene hydrogel for cesium removal in aqueous solution. RSC Adv 7(71):45085–45092. https://doi.org/10.1039/c7ra07530h

    Article  CAS  Google Scholar 

  3. Nakano M, Yong RN (2013) Overview of rehabilitation schemes for farmlands contaminated with radioactive cesium released from Fukushima power plant. Eng Geol 155:87–93. https://doi.org/10.1016/j.enggeo.2012.12.010

    Article  Google Scholar 

  4. Thammawong C, Opaprakasit P, Tangboriboonrat P, Sreearunothai P (2013) Prussian blue-coated magnetic nanoparticles for removal of cesium from contaminated environment. J Nanoparticle Res 15(6):1689. https://doi.org/10.1007/s11051-013-1689-z

    Article  Google Scholar 

  5. Awual MR, Yaita T, Taguchi T, Shiwaku H, Suzuki S, Okamoto Y (2014) Selective cesium removal from radioactive liquid waste by crown ether immobilized new class conjugate adsorbent. J Hazard Mater 278:227–235. https://doi.org/10.1016/j.jhazmat.2014.06.011

    Article  CAS  Google Scholar 

  6. Narayanam PK, A J, K S, (2018) Graphene oxide supported filtration of cesium from aqueous systems. Colloids Surfaces A Physicochem Eng Aspects 539:416–423. https://doi.org/10.1016/j.colsurfa.2017.12.055

    Article  CAS  Google Scholar 

  7. Sangvanich T, Sukwarotwat V, Wiacek RJ, Grudzien RM, Fryxell GE, Addleman RS, Timchalk C, Yantasee W (2010) Selective capture of cesium and thallium from natural waters and simulated wastes with copper ferrocyanide functionalized mesoporous silica. J Hazard Mater 182(1–3):225–231. https://doi.org/10.1016/j.jhazmat.2010.06.019

    Article  CAS  Google Scholar 

  8. Khandaker S, Kuba T, Kamida S, Uchikawa Y (2017) Adsorption of cesium from aqueous solution by raw and concentrated nitric acid-modified bamboo charcoal. J Environ Chem Eng 5(2):1456–1464. https://doi.org/10.1016/j.jece.2017.02.014

    Article  CAS  Google Scholar 

  9. Attallah MF, Abd-Elhamid AI, Ahmed IM, Aly HF (2018) Possible use of synthesized nano silica functionalized by Prussian blue as sorbent for removal of certain radionuclides from liquid radioactive waste. J Molecular Liquids 261:379–386. https://doi.org/10.1016/j.molliq.2018.04.050

    Article  CAS  Google Scholar 

  10. Attallah MF, Allan KF, Mahmoud MR (2015) Synthesis of poly(acrylic acid–maleic acid)SiO2/Al2O3 as novel composite material for cesium removal from acidic solutions. J Radioanal Nuclear Chem 307(2):1231–1241. https://doi.org/10.1007/s10967-015-4349-1

    Article  CAS  Google Scholar 

  11. Attallah MF, Borai EH, Allan KF (2009) Kinetic and thermodynamic studies for cesium removal from low-level liquid radioactive waste using impregnated polymeric material. Radiochemistry 51(6):622–627. https://doi.org/10.1134/s1066362209060113

    Article  CAS  Google Scholar 

  12. Attallah MF, Borai EH, Hilal MA, Shehata FA, Abo-Aly MM (2011) Utilization of different crown ethers impregnated polymeric resin for treatment of low level liquid radioactive waste by column chromatography. J Hazard Mater 195:73–81. https://doi.org/10.1016/j.jhazmat.2011.08.007

    Article  CAS  Google Scholar 

  13. Attallah MF, Hassan HS, Youssef MA (2019) Synthesis and sorption potential study of Al2O3ZrO2CeO2 composite material for removal of some radionuclides from radioactive waste effluent. Appl Radiation Isotopes 147:40–47. https://doi.org/10.1016/j.apradiso.2019.01.015

    Article  CAS  Google Scholar 

  14. Nayl AA, Ahmed IM, Abd-Elhamid AI, Aly HF, Attallah MF (2020) Selective sorption of 134Cs and 60Co radioisotopes using synthetic nanocopper ferrocyanide-SiO2 materials. Sep Purif Technol 234:116060. https://doi.org/10.1016/j.seppur.2019.116060

    Article  CAS  Google Scholar 

  15. Rizk HE, Attallah MF, Ali AMI (2017) Investigations on sorption performance of some radionuclides, heavy metals and lanthanides using mesoporous adsorbent material. J Radioanal Nucl Chem 314(3):2475–2487. https://doi.org/10.1007/s10967-017-5620-4

    Article  CAS  Google Scholar 

  16. Yang H, Sun L, Zhai J, Li H, Zhao Y, Yu H (2014) In situ controllable synthesis of magnetic Prussian blue/graphene oxide nanocomposites for removal of radioactive cesium in water. J Mater Chem A 2(2):326–332. https://doi.org/10.1039/c3ta13548a

    Article  CAS  Google Scholar 

  17. Liu X, Chen GR, Lee DJ, Kawamoto T, Tanaka H, Chen ML, Luo YK (2014) Adsorption removal of cesium from drinking waters: a mini review on use of biosorbents and other adsorbents. Bioresource Technol 160:142–149. https://doi.org/10.1016/j.biortech.2014.01.012

    Article  CAS  Google Scholar 

  18. Basu H, Saha S, Pimple MV, Singhal RK (2018) Graphene-prussian blue nanocomposite impregnated in alginate for efficient removal of cesium from aquatic environment. J Environ Chem Eng 6(4):4399–4407. https://doi.org/10.1016/j.jece.2018.06.062

    Article  CAS  Google Scholar 

  19. Zhao L, Yu B, Xue F, Xie J, Zhang X, Wu R, Wang R, Hu Z, Yang ST, Luo J (2015) Facile hydrothermal preparation of recyclable S-doped graphene sponge for Cu2+ adsorption. J Hazard Mater 286:449–456. https://doi.org/10.1016/j.jhazmat.2015.01.021

    Article  CAS  Google Scholar 

  20. Xu J, Su D, Zhang W, Bao W, Wang G (2016) A nitrogen–sulfur co-doped porous graphene matrix as a sulfur immobilizer for high performance lithium–sulfur batteries. J Mater Chem A 4(44):17381–17393. https://doi.org/10.1039/c6ta05878g

    Article  CAS  Google Scholar 

  21. Kiciński W, Szala M, Bystrzejewski M (2014) Sulfur-doped porous carbons: synthesis and applications. Carbon 68:1–32. https://doi.org/10.1016/j.carbon.2013.11.004

    Article  CAS  Google Scholar 

  22. Kovtyukhova NI, Ollivier PJ, Martin BR, Mallouk TE, Gorchinskiy AD (1999) Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem Mater 11(3):771–778. https://doi.org/10.1021/cm981085u

    Article  CAS  Google Scholar 

  23. Chang S, Fu H, Wu X, Liu C, Li Z, Dai Y, Zhang H (2018) Batch and fixed-bed column studies for selective removal of cesium ions by compressible Prussian blue/polyurethane sponge. RSC Adv 8(64):36459–36467. https://doi.org/10.1039/c8ra07665k

    Article  CAS  Google Scholar 

  24. Jang SC, Haldorai Y, Lee GW, Hwang SK, Han YK, Roh C, Huh YS (2015) Porous three-dimensional graphene foam/Prussian blue composite for efficient removal of radioactive (137)Cs. Sci Rep 5:17510. https://doi.org/10.1038/srep17510

    Article  CAS  Google Scholar 

  25. Bu FX, Hu M, Zhang W, Meng Q, Xu L, Jiang DM, Jiang JS (2015) Three-dimensional hierarchical Prussian blue composed of ultrathin nanosheets: enhanced hetero-catalytic and adsorption properties. Chem Commun 51(99):17568–17571. https://doi.org/10.1039/c5cc06281k

    Article  CAS  Google Scholar 

  26. Imamoglu M, Tekir O (2008) Removal of copper (II) and lead (II) ions from aqueous solutions by adsorption on activated carbon from a new precursor hazelnut husks. Desalination 228(1–3):108–113. https://doi.org/10.1016/j.desal.2007.08.011

    Article  CAS  Google Scholar 

  27. Olatunji MA, Khandaker MU, Mahmud HNME, Amin YM (2015) Influence of adsorption parameters on cesium uptake from aqueous solutions—a brief review. RSC Adv 5(88):71658–71683. https://doi.org/10.1039/c5ra10598f

    Article  CAS  Google Scholar 

  28. Huang G, Shi JX, Langrish TAG (2009) Removal of Cr(VI) from aqueous solution using activated carbon modified with nitric acid. Chem Eng J 152(2–3):434–439. https://doi.org/10.1016/j.cej.2009.05.003

    Article  CAS  Google Scholar 

  29. Wang FY, Wang H, Ma JW (2010) Adsorption of cadmium (II) ions from aqueous solution by a new low-cost adsorbent–bamboo charcoal. J Hazard Mater 177(1–3):300–306. https://doi.org/10.1016/j.jhazmat.2009.12.032

    Article  CAS  Google Scholar 

  30. Jang J, Lee DS (2016) Enhanced adsorption of cesium on PVA-alginate encapsulated Prussian blue-graphene oxide hydrogel beads in a fixed-bed column system. Bioresource Technol 218:294–300. https://doi.org/10.1016/j.biortech.2016.06.100

    Article  CAS  Google Scholar 

  31. Gao Y-J, Feng M-L, Zhang B, Wu Z-F, Song Y, Huang X-Y (2018) An easily synthesized microporous framework material for the selective capture of radioactive Cs+ and Sr2+ ions. J Mater Chem A 6(9):3967–3976. https://doi.org/10.1039/c7ta11208d

    Article  CAS  Google Scholar 

  32. Awual MR, Yaita T, Miyazaki Y, Matsumura D, Shiwaku H, Taguchi T (2016) A reliable hybrid adsorbent for efficient radioactive cesium accumulation from contaminated wastewater. Sci Rep 6:19937. https://doi.org/10.1038/srep19937

    Article  CAS  Google Scholar 

  33. Nilchi A, Saberi R, Moradi M, Azizpour H, Zarghami R (2011) Adsorption of cesium on copper hexacyanoferrate–PAN composite ion exchanger from aqueous solution. Chem Eng J 172(1):572–580. https://doi.org/10.1016/j.cej.2011.06.011

    Article  CAS  Google Scholar 

  34. Liu C, Zachara JM, Smith SC, McKinley JP, Ainsworth CC (2003) Desorption kinetics of radiocesium from subsurface sediments at Hanford Site, USA. Geochim Cosmochim Acta 67(16):2893–2912. https://doi.org/10.1016/s0016-7037(03)00267-9

    Article  CAS  Google Scholar 

  35. Ali RM, Hamad HA, Hussein MM, Malash GF (2016) Potential of using green adsorbent of heavy metal removal from aqueous solutions: adsorption kinetics, isotherm, thermodynamic, mechanism and economic analysis. Ecol Eng 91:317–332. https://doi.org/10.1016/j.ecoleng.2016.03.015

    Article  Google Scholar 

  36. Naeimi S, Faghihian H (2017) Performance of novel adsorbent prepared by magnetic metal-organic framework (MOF) modified by potassium nickel hexacyanoferrate for removal of Cs + from aqueous solution. Sep Purif Technol 175:255–265. https://doi.org/10.1016/j.seppur.2016.11.028

    Article  CAS  Google Scholar 

  37. Yang Q, Wang Y, Wang J, Liu F, Hu N, Pei H, Yang W, Li Z, Suo Y, Wang J (2018) High effective adsorption/removal of illegal food dyes from contaminated aqueous solution by Zr-MOFs (UiO-67). Food Chem 254:241–248. https://doi.org/10.1016/j.foodchem.2018.02.011

    Article  CAS  Google Scholar 

  38. Rethinasabapathy M, Kang S-M, Lee I, Lee G-W, Hwang SK, Roh C, Huh YS (2018) Layer-structured POSS-modified Fe-Aminoclay/Carboxymethyl cellulose composite as a superior adsorbent for the removal of radioactive cesium and cationic dyes. Ind Eng Chem Res 57(41):13731–13741. https://doi.org/10.1021/acs.iecr.8b02764

    Article  CAS  Google Scholar 

  39. Feng S, Ni Z, Feng S, Zhang Z, Liu S, Wang R, Hu J (2019) One-step synthesis of magnetic composite UiO-66/Fe3O4/GO for the removal of radioactive cesium ions. J Radioanal Nucl Chem 319(3):737–748. https://doi.org/10.1007/s10967-018-6379-y

    Article  CAS  Google Scholar 

  40. Yuan T, Chen Q, Shen X (2020) Adsorption of cesium using mesoporous silica gel evenly doped by Prussian blue nanoparticles. Chin Chem Lett. https://doi.org/10.1016/j.cclet.2020.03.035

    Article  Google Scholar 

  41. Yang H-M, Hwang JR, Lee DY, Kim KB, Park CW, Kim HR, Lee K-W (2018) Eco-friendly one-pot synthesis of Prussian blue-embedded magnetic hydrogel beads for the removal of cesium from water. Sci Reports 8(1). https://doi.org/10.1038/s41598-018-29767-y

  42. Yang H, Li H, Zhai J, Sun L, Zhao Y, Yu H (2014) Magnetic prussian blue/graphene oxide nanocomposites caged in calcium alginate microbeads for elimination of cesium ions from water and soil. Chem Eng J 246:10–19. https://doi.org/10.1016/j.cej.2014.02.060

    Article  CAS  Google Scholar 

  43. Lyu J, Liu H, Zeng Z, Zhang J, Xiao Z, Bai P, Guo X (2017) Metal–organic framework UiO-66 as an efficient adsorbent for boron removal from aqueous solution. Ind Eng Chem Res 56(9):2565–2572. https://doi.org/10.1021/acs.iecr.6b04066

    Article  CAS  Google Scholar 

  44. Wu XL, Zhao D, Yang ST (2011) Impact of solution chemistry conditions on the sorption behavior of Cu(II) on Lin'an montmorillonite. Desalination 269(1–3):84–91. https://doi.org/10.1016/j.desal.2010.10.046

    Article  CAS  Google Scholar 

  45. Eren E (2009) Removal of lead ions by Unye (Turkey) bentonite in iron and magnesium oxide-coated forms. J Hazard Mater 165(1–3):63–70. https://doi.org/10.1016/j.jhazmat.2008.09.066

    Article  CAS  Google Scholar 

  46. Loos-Neskovic C, Ayrault S, Badillo V, Jimenez B, Garnier E, Fedoroff M, Jones DJ, Merinov B (2004) Structure of copper-potassium hexacyanoferrate (II) and sorption mechanisms of cesium. J Solid State Chem 177(6):1817–1828. https://doi.org/10.1016/j.jssc.2004.01.018

    Article  CAS  Google Scholar 

  47. Adamson GEBJSAW (1947) The exchange adsorption of ions from aqueous solutions by organic zeolites. J Am Chem Soc 69:2818–2829. https://doi.org/10.1021/ja01203a062

    Article  Google Scholar 

  48. El-Din AMS, Monir T, Sayed MA (2019) Nano-sized Prussian blue immobilized costless agro-industrial waste for the removal of cesium-137 ions. Environ Sci Pollut Res (1). doi:https://doi.org/10.1007/s11356-019-05851-2

  49. Torad NL, Hu M, Imura M, Naito M, Yamauchi Y (2012) Large Cs adsorption capability of nanostructured Prussian Blue particles with high accessible surface areas. J Mater Chem 22(35):18261. https://doi.org/10.1039/c2jm32805d

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors sincerely acknowledged financial supports from the National Natural Science Foundation of China (No. 41371446 and No. 41271498); the Chinese National Funding of Social Science (No. 16BJL074) and SKLECRA2014OFP10; Science and Technology Project of Changzhou University (ZMF17020117); Natural science fund for colleges and universities in Jiangsu Province (18KJB610001); Natural Science Foundation of Jiangsu Province (BK20180964); Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX20_2578).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng Feng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, W., Feng, S., Feng, S. et al. A novel S-doped PB/GO nanocomposite for efficient adsorption and removal of cesium ions. J Radioanal Nucl Chem 326, 879–891 (2020). https://doi.org/10.1007/s10967-020-07387-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07387-z

Keywords

Navigation