Skip to main content
Log in

Chemometric data analysis of gross radioactivity and heavy metal concentrations in soil and sediments of Bendimahi River, Turkey

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

This study deals with radioactivity and heavy metal distribution and statistical analyses in the Bendimahi River Basin, which is within the Lake Van Closed Basin, Turkey. In order to identify the relationships between measured variables and to categorize soils and sediments collected at 15 sites on Bendimahi River, factor and cluster analysis have been applied. The data set is constituted of 9 radiological and physico–chemical variables, including gross alpha and gross beta activities and Pb, Zn, Cu, Cr, Cd, Co and Mn concentrations. Factor and cluster analysis were used to describe the relationship and similarity among data sets (variables) for the Bendimahi River. The convergence diagnostics such as trace plot and kernel density were applied to determine the convergence criteria to the data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sengupta D, Mittal S, Parial K (2014) Radiometric studies and base line calibrations for NORM and TENORM studies. In: Sengupta D (ed) Recent trends in modelling of environmental contaminants. Springer, India, pp 1–20

    Google Scholar 

  2. Semkow TM, Parekh PP (2001) Principles of gross alpha and beta radioactivity detection in water. Health Phys 81(5):567–574

    CAS  PubMed  Google Scholar 

  3. Selçuk Zorer Ö, Ceylan H, Doğru M (2008) Assessments of some trace heavy metals and radioactivity concentration in water of Bendimahi River Basin (Van, Turkey). Environ Monit Assess 147:183–190

    Google Scholar 

  4. Roussel S, Preys S, Chauchard F, Lallemand J (2014) Multivariate data analysis (chemometrics). In: O’Donnell CP, Fagan C, Cullen PJ (eds) Process analytical technology for the food industry, food engineering series. Springer, New York, pp 7–60

    Google Scholar 

  5. Tanaskovic I, Golobocanin D, Miljevic N (2012) Multivariate statistical analysis of hydrochemical and radiological data of Serbian spa waters. J Geochem Explor 112:226–234

    CAS  Google Scholar 

  6. Singh KP, Malik A, Mohan D, Sinha S, Singh VK (2005) Chemometric data analysis of pollutants in wastewater—a case study. Anal Chim Acta 532:15–25

    CAS  Google Scholar 

  7. Matiatos I, Alexopoulos A, Godelitsas A (2014) Multivariate statistical analysis of the hydrogeochemical and isotopic composition of the groundwater resources in northeastern Peloponnesus (Greece). Sci Total Environ 476–477:577–590

    PubMed  Google Scholar 

  8. Ravisankar R, Vanasundari K, Suganya M, Raghu Y, Rajalakshmi A, Chandrasekaran A, Sivakumar S, Chandramohan J, Vijayagopal P, Venkatraman B (2014) Multivariate statistical analysis of radiological data of building materials used in Tiruvannamalai, Tamilnadu, India. Appl Radiat Isot 85:114–127

    CAS  Google Scholar 

  9. Külahcı F, Şen Z (2008) Multivariate statistical analyses of artificial radionuclides and heavy metals contaminations in deep mud of Keban Dam Lake, Turkey. Appl Radiat Isot 66:236–246

    PubMed  Google Scholar 

  10. Hurtado-Bermudez S, Jurado-Gonzalez JA, Santos JL, Diaz-Amigo CF, Aparicio I, Mas JL, Alonso E (2019) Geographical origin of bivalve molluscs in coastal areas using natural radioactivity fingerprinting and multivariate statistical analyses: Andalusian coast as case of study. J Hazard Mater 367:706–714

    CAS  PubMed  Google Scholar 

  11. Kaniu MI, Angeyo KH, Darby IG (2018) Occurrence and multivariate exploratory analysis of the natural radioactivity anomaly in the south coastal region of Kenya. Radiat Phys Chem 146:34–41

    CAS  Google Scholar 

  12. Dewey JF, Hempton MR, Kidd WSF, Saroglu F, Şengör AMC (1986) In: Coward MP, Ries AC (Eds) Shortening of continental lithosphere: the neotectonics of Eastern Anatolia—a young collision zone. Geological Society of London, Special Publications 19(1):1–36

  13. Ketin İ (1977) General Geology–I, Introduction to earth sciences. Istanbul Technical University Publications, Istanbul

    Google Scholar 

  14. Selçuk Zorer Ö, Ceylan H, Doğru M (2009) Determination of heavy metals and comparison to gross radioactivity concentration in soil and sediment samples of the Bendimahi River Basin (Van, Turkey). Water Air Soil Pollut 196:75–87

    Google Scholar 

  15. Selçuk Zorer Ö, Ceylan H, Doğru M (2009) Gross alpha and beta radioactivity concentration in water, soil and sediment of the Bendimahi River and Van Lake (Turkey). Environ Monit Assess 148:39–46

    PubMed  Google Scholar 

  16. PIC (2000) Vista 2000, Version 2. Protean Instrument Corporation, Lenoir City

    Google Scholar 

  17. Bray N (2013) Introduction to multivariate data analysis in chemical engineering, Marketing & Communications, Camo Software August 2, https://www.controleng.com/articles/introduction–to–multivariate–data–analysis–in–chemical–engineering/

  18. Vega M, Rafael Pardo RM, Barrado E, Luis Debaâ LN (1998) Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis. Water Res 32(12):3581–3592

    CAS  Google Scholar 

  19. Varmuza K, Filzmoser P (2009) Introduction to multivariate statistical analysis in chemometrics. CRC Press, Boca Raton

    Google Scholar 

  20. Hair J, Black W, Babin B, Anderson R, Tatham R (2006) Multivariate data analysis, 6th edn. Pearson Prentice Hall, New Jersey

    Google Scholar 

  21. Hardle WK, Simar L (2015) Applied multivariate statistical analysis, 4th edn. Springer-Verlag, Berlin

    Google Scholar 

  22. Johnson RA, Wichern DW (1988) Applied multivariate statistical analysis, 2nd edn. Wiley, New York

    Google Scholar 

  23. Alpar R (2011) Multivariate statistical methods, 3rd edn. Detay Publications, Ankara

    Google Scholar 

  24. Jöreskog KG, Olsson UH, Wallentin FY (2016) Principal components (PCA). In: Jöreskog KG, Olsson UH, Wallentin FY (eds) Multivariate analysis with LISREL, Springer Series in Statistics. Springer, Cham, pp 237–256

    Google Scholar 

  25. Lee S (2007) Structural equation modeling: a Bayesian approach. Wiley, London

    Google Scholar 

  26. Comrey AL, Lee HB (1992) A first course in factor analysis. Hillsdale, New Jersey

    Google Scholar 

  27. Çokluk Ö, Şekercioğlu G, Büyüköztürk Ş (2010) Multivariate statistics for social sciences, 1st edn. Pegem Publications, Ankara

    Google Scholar 

  28. Tabachnick BG, Fidell LS (2001) Using multivariate statistics, 4th edn. Allyn and Bacon, Boston

    Google Scholar 

  29. Armstrong N, Hibbert DB (2009) An introduction to Bayesian methods for analyzing chemistry data: Part 1: An introduction to Bayesian theory and methods. Chemometr Intell Lab 97:194–210

    CAS  Google Scholar 

  30. Congdon P (2001) Applied Bayesian modelling. Wiley, London

    Google Scholar 

  31. Palomo J, Dunson DB, Bollen K (2007) Bayesian structural equation modeling. In: Lee SY (ed) Handbook of computing and statistics with applications. Elsevier, North-Holland, pp 163–188

    Google Scholar 

  32. Lee S, Song X (2004) Evaluation of the Bayesian and Maximum Likelihood approaches in analyzing structural equation models with small sample sizes. Multivar Behav Res 39(4):653–686

    Google Scholar 

  33. Yang M, Dunson DB (2010) Bayesian semiparametric structural equation models with latent variables. Psychometrika 75:675–693

    Google Scholar 

  34. Sehribanoglu S, Okut H (2015) Effects of burn–in and thinning methods on iteration and autocorelation in a model system of Bayesian Structural Equation Models. AKU J Sci Eng 15:12–18

    Google Scholar 

  35. Gilks WR, Richardson S, Spiegelhalter DJ (1996) Markov Chain Monte Carlo in Practice. Chapman and Hall, London

    Google Scholar 

  36. Gamerman D (1997) Markov Chain Monte Carlo stochastic simulation for Bayesian inference. Chapman and Hall, London

    Google Scholar 

  37. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equations of state calculations by fast computing machines. J Cheml Phys 21(6):1087–1092

    CAS  Google Scholar 

  38. Hastings WK (1970) Monte Carlo sampling methods using Markov Chains and their applications. Biometrika 57(1):97–109

    Google Scholar 

  39. Geman S, Geman D (1984) Stochastic relation, Gibbs Distributions, and the Bayesian restoretion of images. IEEE T Pattern Anal 6(6):721–741

    CAS  Google Scholar 

  40. Gill J (2002) Bayesian methods (A social and behavioral sciences approach). Chapman & Hall/CRC Statistics in the Social and Behavioral Sciences, USA

    Google Scholar 

  41. Jackman S (2009) Bayesian analysis for the social sciences. Wiley series in probability and statistics. Wiley, London

    Google Scholar 

  42. Press SJ (1972) Applied multivariate analysis. Holt, Rinehart and Winston Inc, New York

    Google Scholar 

  43. Conti G, Frühwirth-Schnatter S, Heckman JJ, Piatek R (2014) Bayesian exploratory factor analysis. J Econometrics 183:31–57

    Google Scholar 

  44. SAS (2009) SAS/STAT (R) 9.2. User’s Guide. SAS Institute Inc., Cary, NC, USA. http://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/viewer.htm#statugintroBayessect007.htm

  45. Grynaviski J (2003) ABSLec13–MCMC diagnostics. University of Chicago (unpublished) http://home.uchicago.edu/~grynav/bayes/ABSLec13.ppt

  46. Turekian KK, Wedepohl KH (1961) Distribution of the elements in some major units of the earth’s crust. Geol Soc Am Bull 72:175–192

    CAS  Google Scholar 

  47. Kraus U, Wiegand J (2006) Long-term effects of the Aznalcóllar mine spill-heavy metal content and mobility in soils and sediments of the Guadiamar river valley (SW Spain). Sci Total Environ 367:855–871

    CAS  PubMed  Google Scholar 

  48. Bauerek A, Cabala J, Król BS (2009) Mineralogical alterations of Zn-Pb flotation wastes of Mississippi valley-type ores (Southern Poland) and their impact on contamination of rainwater runoff. Pol J Environ 18:781–788

    CAS  Google Scholar 

  49. Liu XL, Zeng ZX, Chen Z, Tie BQ, Chen QW, Ye CC (2013) Non-point loads of soluble cadmium by in situ field experiment with different landuses, in central Hunan province mining area. Huan Jing Ke Xue 34:3557–3561

    PubMed  Google Scholar 

  50. DeLaune PB, Moore PA (2014) Factors affecting arsenic and copper runoff from fields fertilized with poultry litter. J Environ Qual 43:1417–1423

    CAS  PubMed  Google Scholar 

  51. Mlayah A, Ferreira da Silva E, Rocha F, Hamza CB, Charef A, Noronha F (2009) The oued mellègue: mining activity, stream sediments and dispersion of base metals in natural environments, north-western Tunisia. J Geochem Explor 102:27–36

    CAS  Google Scholar 

  52. Dousari A, Mabkhout M, Garrouch AA, Guedouar LH (2009) Analysis of the convective dispersive transport in porous media. J Pet Sci Eng 66:15–23

    Google Scholar 

  53. Xinwei L, Lingqing WL, Xiaodan J, Leipeng Y, Gelian D (2006) Specific activity and hazards of Archeozoic-Cambrian rock samples collected from the Weibei area of Shaanxi, China. Radiat Prot Dosim 118:352–359

    CAS  Google Scholar 

  54. Faanu A, Lawluvi H, Kpeglo DO, Darko EO, Emi-Reynolds G, Awudu AR, Adukpo OK, Kansaana C, Ali ID, Agyeman B, Agyeman L, Kpodzro R (2014) Assessment of natural and anthropogenic radioactivity levels in soils, rocks and water in the vicinity of Chirano gold mine in Ghana. Radiat Prot Dosim 158:87–99

    CAS  Google Scholar 

  55. NCRP (1987) Radiation exposure of the U.S. population from consumer products and miscellaneous sources, NCRP report no. 95, Washington, DC

  56. Enyinnya CU, Avwiri GO, Ndukwu BC, Ononugbo CP (2018) Gross alpha and beta radioactivity in soil and sediment around selected mining sites of Kogi State, Nigeria. J Environ Pollut Hum Health 6(4):157–164

    Google Scholar 

  57. Kam E, Yümün ZÜ, Kurt D (2017) Gross alpha and gross beta activity concentrations in sediments in Gulf of Izmir (Eastern Aegean Sea, Turkey). J Turk Chem Soc A 4(3):889–898

    CAS  Google Scholar 

  58. Wallova G, Kulichova Z, Rajczykova E, Makovinska J (2016) Survey of radioactivity along the Bosna River. J Radioanal Nucl Ch 307(1):247–252

    CAS  Google Scholar 

  59. Huang T, Hao Y, Pang Z, Li Z, Yang S (2017) Radioactivity of soil, rock and water in a shale gas exploitation area, SW China. Water 9:299

    Google Scholar 

  60. Franco-Uria A, Lopez-Mateo C, Roca E, Fernandez-Marcos ML (2009) Source identification of heavy metals in pastureland by multivariate analysis in NW Spain. J Hazard Mater 165:1008–1015

    CAS  PubMed  Google Scholar 

  61. Rajkumar H, Naik PK, Rishi MS (2019) Evaluation of heavy metal contamination in soil using geochemical indexing approaches and chemometric techniques. Int J Env Sci Tech 16:7467–7486

    CAS  Google Scholar 

  62. Huang Q, Shen H, Wang Z, Liu X, Fu R (2006) Influences of natural and anthropogenic processes on the nitrogen and phosphorus fluxes of the Yangtze Estuary, China. Reg Environ Change 6:125–131

    CAS  Google Scholar 

  63. Jessop A, Turner A (2011) Leaching of Cu and Zn from discarded boat paint particles into tap water and rain water. Chemosphere 83:1575–1580

    CAS  PubMed  Google Scholar 

  64. Blanchard RL, Hahne RM, Kahn B, McCurdy D, Mellor RA, Moore WS, Sedlet J, Whittaker E (1985) Radiological sampling and analytical methods for national primary drinking water regulation. Health Phys 48:587–600

    CAS  PubMed  Google Scholar 

  65. Malanca A, Repetti M, Macedo HR (1998) Gross alpha and beta-activities in surface and ground water of Rio Grando do Norte, Brazil. Appl Radiat Isot 49:893–898

    CAS  PubMed  Google Scholar 

  66. Peters K, Ramos BL, Zumberge J (2010) Circum-arctic petroleum systems defined using biomarkers, ısotopes, and chemometrics. AAPG International Conference & Exhibition, Calgary

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Özlem Selçuk Zorer.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Şehribanoğlu, S., Zorer, H. & Selçuk Zorer, Ö. Chemometric data analysis of gross radioactivity and heavy metal concentrations in soil and sediments of Bendimahi River, Turkey. J Radioanal Nucl Chem 326, 223–239 (2020). https://doi.org/10.1007/s10967-020-07361-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07361-9

Keywords

Navigation