Skip to main content
Log in

Thermodynamic modeling of Pu(IV) and nitric acid extraction by 1.1 M tri-iso-amyl phosphate in n-dodecane

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A thermodynamic model for the liquid–liquid extraction of tetravalent plutonium (Pu(IV)) by 1.1 M Tri iso Amyl Phosphate (TiAP) in n-dodecane was developed. The activity coefficients of species in the aqueous phase were estimated using eUNIQUAC activity coefficient model. The plutonium speciation in the aqueous nitric acid solution of 1–6 M concentration region was modelled by taking account of mono nitrate (Pu(NO3)3+), di nitrate \(({\text{Pu}}({\text{NO}}_{3} )_{2}^{2 + } )\), tetra nitrate (Pu(NO3)4) and hexa nitrate \(({\text{Pu}}({\text{NO}}_{3} )_{6}^{2 - } )\) complexes. The eUNIQUAC activity coefficient model parameter and stability constant of tetra and hexa nitrate complexes were determined using the experimental water activity as well as extraction data. The distribution coefficient of nitric acid and Pu(IV) in the 1.1 M TiAP was estimated by accounting HNO3·TiAP, HNO3·2TiAP and Pu(NO3)4·2TiAP complexes in the organic phase. A good correlation between the estimated and experimental organic phase concentration of nitric acid and plutonium nitrate was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hasan SH, Shukla JP (2003) Tri-iso-amyl phosphate (TAP): an alternative extractant to tri-butyl phosphate (TBP) for reactor fuel reprocessing. J Radioanal Nucl Chem 258:563–573

    Article  CAS  Google Scholar 

  2. Tkac P, Paulenova A, Vandegrift GF, Krebs JF (2009) Modeling of Pu(IV) extraction from acidic nitrate media by tri-n-butyl phosphate. J Chem Eng Data 54:1967–1974

    Article  CAS  Google Scholar 

  3. Ravi Kanth MVSR, Pushpavanam S, Narasimhan S, NarasimhaMurty B (2019) Unified framework for modeling reactive extraction of metals: illustration on plutonium(IV) extraction with tri- n-butyl phosphate. Ind Eng Chem Res 58:20788–20796

    Article  Google Scholar 

  4. Marsh SF, Day RS, Veirs DK (1991) Spectrophotometric investigation of the Pu(IV) nitrate complex sorbed by ion exchange resins. Los Almos National Laboratory, LA-12070

  5. Veirs DK, Smith CA, Berg JM, Zwick BD, Marsh SF, Allen P, Conradson SD (1994) Characterization of the nitrate complexes of Pu(IV) using absorption spectroscopy, 15N NMR, and EXAFS. J Alloys Compd 214:328–332

    Article  Google Scholar 

  6. Berg JM, Veirs DK, Vaughn RB, Cisneros MA, Smith CA (1998) Plutonium(IV) mononitrate and dinitrate complex formation in acid solutions as a function of ionic strength. J Radioanal Nucl Chem 235:25–29

    Article  CAS  Google Scholar 

  7. Metivier H, Guillaumont R (1976) Hydrolysis and complexing of tetravalent plutonium. J Inorg Nucl Chem Suppl 28:179–183

    Article  Google Scholar 

  8. Berg JM, Veirs DK, Vaughn RB et al (2000) Speciation model selection by Monte Carlo analysis of optical absorption spectra: plutonium(IV) nitrate complexes. Appl Spectrosc 54:812–823

    Article  CAS  Google Scholar 

  9. Lipis LV, Pozharskii BG, Fomin VV (1960) Spectrophotometric study of the complex formation—processes of tetravalent plutonium in nitric acid solutions. Zhurnal Stxuktumoi Khimii 1:135–144

    CAS  Google Scholar 

  10. Allen PG, Veirs DK, Conradson SD, Smith CA, Marsh SF (1996) Characterization of aqueous plutonium(IV) nitrate complexes by extended X-ray absorption fine structure spectroscopy. Inorg Chem 35:2841–2845

    Article  CAS  Google Scholar 

  11. Brothers JA, Hart RG, Mathers WG (1958) The nitrate complexes of tetravalent plutonium. J Inorg Nucl Chem 7:85–93

    Article  CAS  Google Scholar 

  12. Laxminarayanan TS, Patil SK, Sharma HD (1964) Stability constants of nitrate and sulphate complexes of plutonium (IV). J Inorg Nucl Chem 26:1001–1009

    Article  CAS  Google Scholar 

  13. Spahiu K, Puigdomenech I (1998) On weak complex formation: re-interpretation of literature data on the Np and Pu nitrate complexation. Radiochim Acta 82:413–419

    Article  CAS  Google Scholar 

  14. Solovkin AS (1971) Thermodynamics of extraction of Pu(IV) from nitric acid solutions by tri-n-butyl phosphate (TBP). At Energy 30:673–675

    Article  Google Scholar 

  15. Rubisov VN, Solovkin SE (1982) Calculation of steady state regimes of technological extraction processes from data on the thermodynamics of Pu(IV) extraction with tri-n-butyl phosphate(TBP) from nitrate solutions. Rubisov At Energy 52:400–403

    Article  Google Scholar 

  16. Kubic WL, Jackson JC (2012) A thermodynamic model of plutonium (IV) nitrate solutions. J Radioanal Nucl Chem 293:601–612

    Article  CAS  Google Scholar 

  17. Sreenivasulu B, Suresh A, Sivaraman N, Vasudeva Rao PR (2016) Co-extraction and co-stripping of U(VI) and Pu(IV) using tri-iso-amyl phosphate and tri- n -butyl phosphate in n -dodecane from nitric acid media under high loading conditions. Radiochim Acta 104:227–237

    Article  CAS  Google Scholar 

  18. Gopakumar G, Sreenivasulu B, Suresh A, Brahmmananda Rao CVS, Sivaraman N, Joseph M, Anoop A (2016) Complexation behavior of the tri-n-butyl phosphate ligand with Pu(IV) and Zr(IV): a computational study. J Phys Chem A 120:4201–4210

    Article  CAS  Google Scholar 

  19. Ravi Kanth MVSR, Pushpavanam S, Narasimhan S, Narasimha MB (2014) A robust and efficient algorithm for computing reactive equilibria in single and multiphase systems. Ind Eng Chem Res 53:15278–15286

    Article  CAS  Google Scholar 

  20. Abrams DS, Prausnitz JM (1975) Statistical thermodynamics of liquid mixtures: a new expression for the excess Gibbs energy of partly or completely miscible systems. AIChE J 21:116–128

    Article  CAS  Google Scholar 

  21. Sander BO, Fredenslund A, Rasmussen P (1986) Calculation of vapor-liquid equilibria in mixed solvent/salt systems using an extended UNIQUAC equation. Chem Eng Sci 41:1171–1183

    Article  CAS  Google Scholar 

  22. Sander BO, Rasmussen P, Fredenslund A (1986) Calculation of solid–liquid equilibria in aqueous solutions of nitrate salts using an extended UNIQUAC equation. Chem Eng Sci 41:1197–1202

    Article  CAS  Google Scholar 

  23. Nicolaisen H, Rasmussen P, Sorensen JM (1993) Correlation and prediction of mineral solubilities in the reciprocal salt system (Na+, K+)(Cl, SO42−)–H2O at 0–100 °C. Chem Eng Sci 48:3149–3158

    Article  CAS  Google Scholar 

  24. Thomsen KAJ, Rasmussen P, Gani R (1996) Correlation and prediction of thermal properties and phase behaviour for a class of aqueous electrolyte systems. Chem Eng Sci 51:3675–3683

    Article  CAS  Google Scholar 

  25. Ryan JL (1960) Species involved in the anion-exchange absorption of quadrivalent actinide nitrates. J Phys Chem 64:1375–1385

    Article  CAS  Google Scholar 

  26. Charrin N, Moisy Ph, Garcia-Argote S, Blanc P (1999) Thermodynamic study of the ternary system Th(NO3)4/HNO3/H2O. Radiochim Acta 86:143–149

    Article  CAS  Google Scholar 

  27. Charrin N, Moisy P, Blanc P (2000) Determination of fictive binary data for plutonium (IV) nitrate. Radiochim Acta 88:25–31

    CAS  Google Scholar 

  28. De Sio S, Sorel C, Bossé E, Moisy P (2013) Contribution of extraction isotherms modeling based on the Mikulin-Sergievskii-Dannus approach to the speciation of plutonium (IV) in TBP 30%/dodecane. Radiochim Acta 101:373–377

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. K. Pandey.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balasubramonian, S., Pandey, N.K. & Subba Rao, R.V. Thermodynamic modeling of Pu(IV) and nitric acid extraction by 1.1 M tri-iso-amyl phosphate in n-dodecane. J Radioanal Nucl Chem 326, 105–113 (2020). https://doi.org/10.1007/s10967-020-07338-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07338-8

Keywords

Navigation