Skip to main content
Log in

Accurate measurement of 55Fe in radioactive waste

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A radiochemical method was developed for the accurate 55Fe determination in various radioactive waste, in particular samples contaminated with 241Pu. It consisted of three purification steps based on first ammonium hydroxide precipitation, and then anion exchange separation followed by TRU®-based extraction chromatography. It was characterized by an iron recovery yield of about 80% for all the studied samples and a 60Co decontamination factor of 106. In comparison to a standard protocol based on iron cupferrate extraction in chloroform, an improvement of a 30-fold factor was achieved towards plutonium. The developed TRU®-based procedure was validated by participating in interlaboratory exercises.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Laboratoire National Henri Becquerel (2005) In: Tables de radionucléides – 55Fe, 239Pu, 240Pu, 241Pu, 239Pu, 237Np, 241Am

  2. Remenec B, Dulanska S, Matel L (2014) Determination of alpha, beta, X-ray and gamma emitting radionuclides in reactor components and fuel assemblies from NPP V1 Jaslovske Bohunice. J Radioanal Nucl Chem 299:1799–1804

    Article  CAS  Google Scholar 

  3. Hou X, Østergaard LF, Nielsen SP (2005) Determination of 63Ni and 55Fe in nuclear waste samples using radiochemical separation and liquid scintillation counting. Anal Chim Acta 535:297–307

    Article  CAS  Google Scholar 

  4. Lee CH, Lee MH, Ha YK, Song KS (2011) Systematic radiochemical separation for the determination of 99Tc, 90Sr, 94Nb, 55Fe and 59,63Ni in low and intermediate radioactive waste samples. J Radioanal Nucl Chem 288:319–325

    Article  CAS  Google Scholar 

  5. Choi KS, Lee CH, Im HJ et al (2017) Separation of Tc-99, Sr-90, Ni-59, Ni-63, Fe-55 and Nb-94 from activated carbon and stainless steel waste samples. J Radioanal Nucl Chem 3:2145–2154

    Article  Google Scholar 

  6. Curionia A, Dinara N, La Torrea FP, Leidnera J, Murtasa F, Puddua S, Silari M (2017) Measurements of 55Fe activity in activated steel samples with GEMPix. Nucl Instrum Methods Phys Res 849:60–71

    Article  Google Scholar 

  7. Leskinen A, Salminen–Paatero S, Räty A, Tanhua–Tyrkkö M, Iso–Markku T, Puukko E (2020) Determination of 14C, 55Fe, 63Ni and gamma emitters in activated RPV steel samples: a comparison between calculations and experimental analysis. J Radioanal Nucl Chem 323:399–413

    Article  CAS  Google Scholar 

  8. Taddei MHT, Macacini JF, Vicente R, Marumo JT, Sakata SK, Terremoto LAA (2013) A comparative study using liquid scintillation counting and X-ray spectrometry to determine 55Fe in radioactive wastes. J Radioanal Nucl Chem 295:2267–2272

    Article  CAS  Google Scholar 

  9. Warwick PE, Croudace IW (2006) Isolation and quantification of 55Fe and 63Ni in reactor effluents using extraction chromatography and liquid scintillation analysis. Anal Chim Acta 567:277–285

    Article  CAS  Google Scholar 

  10. Mikelic L, Orescanin V, Lulic S (2007) Determination of 55Fe in waste waters of the Krsko nuclear power plant measured simultaneously by liquid scintillation spectrometer (LSC) and X-ray spectrometer (XRS). Nucl Instrum Methods Phys Res B 263:95–98

    Article  CAS  Google Scholar 

  11. Song L, Ma L, Ma Y, Yang Y, Dai X (2019)Method for sequential determination of 55Fe and 63Ni in leaching solution from cement solidification. J Radioanal Nucl Chem 319:1227–1234

    Article  CAS  Google Scholar 

  12. Nielsen JM (1960) In the Radiochemistry of Iron. NAS-NS 3017. National Academy of Sciences, National Research Council, Washington

    Google Scholar 

  13. Reddy BR, Sarma PVRB (1996) Extraction of iron(III) at macro-level concentrations using TBP, MIBK and their mixtures. Hydrometallurgy 43:299–306

    Article  CAS  Google Scholar 

  14. AFNOR Standard NF M60-322 (2005) Nuclear energy - Nuclear fuel cycle technology - Waste - Determination of iron 55 activity in effluents and waste by liquid scintillation after prior chemical separation

  15. Furman NH, Mason WB, Pekola JS (1949) Extraction of cupferrates. Anal Chem 21:1325–1330

    Article  CAS  Google Scholar 

  16. Sandell EB, Cummings PF (1949) Chloroform extraction of ferric cupferrate. Anal Chem 21:1356–1358

    Article  CAS  Google Scholar 

  17. Stary J, Smizanska J (1963) A systematic study of the solvent extraction of metal cupferrates. Anal Chim Acta 29:545–551

    Article  CAS  Google Scholar 

  18. Rassou S, Vercouter T, Mariet C (2020) Sustainable solvent extraction process for Fe analysis in radioactive samples based on microfluidic tools. Solvent Extr Ion Exc 38:236–249

    Article  CAS  Google Scholar 

  19. Horwitz EP, Chiarizia R, Dietz ML, Diamond H, Nelson DM (1993) Separation and preconcentration of actinides from acidic media by extraction chromatography. Anal Chim Acta 281:361–372

    Article  CAS  Google Scholar 

  20. Quidelleur S, Granet M, Laszak I, Isnard H, Pons-Branchu E, Brennetot R, Caussignac C (2009) One step U-Pu-Cs-Ln-steel separation using TRU preconditioned extraction resins from Eichrom for application on transmutation targets. J Radioanal Nucl Chem 280:507–517

    Article  CAS  Google Scholar 

  21. Grahek Z, Macefat R (2004) Isolation of iron and strontium from liquid samples and determination of 55Fe and 89,90Sr in liquid radioactive waste. Anal Chem Acta 511:339–348

    Article  CAS  Google Scholar 

  22. Grahek Z, Macefat R (2006) Extraction chromatographic separation of iron from complex liquid samples and the determination of 55Fe. J Radioanal Nucl Chem 267:131–137

    Article  CAS  Google Scholar 

  23. Augeray C, Mouton M, Broustet N, Perdereau MF, Laconici C, Loyen J, Fayolle C, Picolo JL (2015) Development of a protocol to measure iron-55 in solid matrices in the environment. J Environ Radioact 141:164–173

    Article  CAS  Google Scholar 

  24. Eichrom Technologies, Inc. (2014) Analytical procedures FEW01, iron-55 in water, May 1

  25. Gautier C, Colin C, Garcia C (2016) A comparative study using liquid scintillation counting to determine 63Ni in low and intermediate level radioactive waste. J Radioanal Nucl Chem 308:261–270

    Article  CAS  Google Scholar 

  26. ANDRA, National Radioactive Waste Management Agency (2014) ACO.SP.ASRE.99.0002D ANDRA specifications. Accessed 14 May 2020

  27. Hou X (2007) Radiochemical analysis of radionuclides difficult to measure for waste characterization in decommissioning of nuclear facilities. J Radioanal Nucl Chem 273:43–48

    Article  CAS  Google Scholar 

  28. Coleman GH (1965) In the Radiochemistry of Plutonium. NAS-NS 3058. National Academy of Sciences, National Research Council, Washington

    Google Scholar 

  29. Burney GA, Harbour RM (1974) In the Radiochemistry of Neptunium. NAS-NS 3060, National Academy of Sciences, National Research Council, Washington

    Google Scholar 

  30. Wish L (1959) Quantitative radiochemical analysis by ion exchange. Anion exchange behavior in mixed acid solutions and development of a sequential separation scheme. Anal Chem 31:326–330

    Article  CAS  Google Scholar 

  31. Faris JP, Buchanan RF (1964) Anion exchange characteristics of the elements in nitric acid medium. Anal Chem 36:1157–1158

    Article  CAS  Google Scholar 

  32. Stary J (1964) The solvent extraction of metal chelates. Pergamon Press, New York

    Book  Google Scholar 

  33. Akatsu E, Hoshi M, Ono R, Ueno K (1968) Some complexes of Americium and Curium with oxine, cupferron and N-Benzoylphenylhydroxylamine. J Nucl Sci Technol 5:252–255

    Article  CAS  Google Scholar 

  34. Leskinen A, Salminen-Paatero S, Gautier C, Räty A et al (2020) Intercomparison exercise on difficult to measure radionuclides in activated steel - statistical analysis of radioanalytical results and activation calculations. J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-020-07181-x

    Article  Google Scholar 

  35. Analysis method establishment Committee, CETAMA, Bagnols-sur-Ceze, France. https://cetama.partenaires.cea.fr/Local/cetama/files/496/Plaquette.CETAMA.Anglais.pdf. Accessed 14 May 2020

Download references

Acknowledgements

The authors thank Céline Cruchet for ICP-AES analysis and Pascal Fichet for his wise corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Céline Gautier.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gautier, C., Laporte, E., Lambrot, G. et al. Accurate measurement of 55Fe in radioactive waste. J Radioanal Nucl Chem 326, 591–601 (2020). https://doi.org/10.1007/s10967-020-07332-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07332-0

Keywords

Navigation