U(VI) sorption onto natural sorbents

Abstract

This investigation made it possible to compare the sorption capacity of mineral and organic sorbents in respect to U(VI). In order to establish the patterns of sorption, natural sorbents with a high content of rock-forming mineral were used: glauconite, diatomite, zeolite, peat, brown and hard coals, shungite. Each sample was characterized using X-ray diffraction, X-ray fluorescence method, scanning electron microscope, XPS spectra, potentiometric acid–base titration and surface area measurement. The partitioning of U(VI) was determined by sequential extraction technique. It was shown that the highest sorption ability and strongest interaction towards U(VI) is common to peat and brown coal.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Morss NME, Morss JF (2006) The chemistry or the actinide and transactinide elements, 3rd edn. Springer, Berlin

    Book  Google Scholar 

  2. 2.

    Tournassat C, Tinnacher RM, Grangeon S, Davis JA (2018) Modeling uranium(VI) adsorption onto montmorillonite under varying carbonate concentrations: a surface complexation model accounting for the spillover effect on surface potential. Geochim Cosmochim Acta 220:291–308. https://doi.org/10.1016/j.gca.2017.09.049

    CAS  Article  Google Scholar 

  3. 3.

    Fuger J, Joseph J, Katz J, Lester R, Morss NME (2008) The chemistry of the actinide and transactinide elements. Springer, Berlin, p 1

    Google Scholar 

  4. 4.

    Gao Y, Shao Z, Xiao Z (2015) U(VI) sorption on illite: effect of pH, ionic strength, humic acid and temperature. J Radioanal Nucl Chem 303:867–876. https://doi.org/10.1007/s10967-014-3385-6

    CAS  Article  Google Scholar 

  5. 5.

    Choppin GR (2006) Actinide speciation in aquatic systems. Mar Chem 99:83–92. https://doi.org/10.1016/j.marchem.2005.03.011

    CAS  Article  Google Scholar 

  6. 6.

    Grenthe I, Fuger J, Lemire RJ, Muller AB, Wanner H, Forest I (1992) Chemical thermodynamics of uranium. Chem Thermodyn Uran. https://doi.org/10.1063/1.473182

    Article  Google Scholar 

  7. 7.

    Wang Z, Zachara JM, Xia Y, Resch TC, Moore DA, Liu C (2011) Determining individual mineral contributions to U(VI) adsorption in a contaminated aquifer sediment: a fluorescence spectroscopy study. Geochim Cosmoch Acta 75:2965–2979. https://doi.org/10.1016/j.gca.2011.03.008

    CAS  Article  Google Scholar 

  8. 8.

    Camacho LM, Deng S, Parra RR (2010) Uranium removal from groundwater by natural clinoptilolite zeolite: effects of pH and initial feed concentration. J Hazard Mater 175:393–398. https://doi.org/10.1016/j.jhazmat.2009.10.017

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Sprynskyy M, Kowalkowski T, Tutu H, Cukrowska EM, Buszewski B (2015) Ionic liquid modified diatomite as a new effective adsorbent for uranium ions removal from aqueous solution. Colloids Surfaces A Physicochem Eng Asp 465:159–167. https://doi.org/10.1016/j.colsurfa.2014.10.042

    CAS  Article  Google Scholar 

  10. 10.

    Yuan N, Liu P, Wu W (2018) Diatomite modified by TiO2 for adsorption of U(VI). Radiochim Acta 106:733–742. https://doi.org/10.1515/ract-2018-2923

    CAS  Article  Google Scholar 

  11. 11.

    Xiao J, Chen Y, Zhao W, Xu J (2013) Sorption behavior of U(VI) onto Chinese bentonite: effect of pH, ionic strength, temperature and humic acid. J Mol Liq 188:178–185. https://doi.org/10.1016/j.molliq.2013.10.008

    CAS  Article  Google Scholar 

  12. 12.

    Orhan Y, Buyukungor H (2018) The removal of heavy metals by using agricultural wastes. Water Sci Technol 28:247–255. https://doi.org/10.2166/wst.1993.0114

    Article  Google Scholar 

  13. 13.

    Ayta O, Akyil S, Aslani MAA, Aytekin U (1999) Removal of uranium from aqueous solutions by diatomite (Kieselguhr). J Radioanal Nucl Chem 240:973–976

    Article  Google Scholar 

  14. 14.

    Gao M, Zhu G, Gao C (2014) A review: adsorption materials for the removal and recovery of uranium from aqueous solutions. Energy Environ 3:219–226. https://doi.org/10.1166/eef.2014.1104

    Article  Google Scholar 

  15. 15.

    Liu P, Wu H, Yuan N, Liu Y, Pan D, Wu W (2017) Removal of U(VI) from aqueous solution using synthesized β-zeolite and its ethylenediamine derivative. J Mol Liq 234:40–48. https://doi.org/10.1016/j.molliq.2017.03.055

    CAS  Article  Google Scholar 

  16. 16.

    Noli F, Buema G, Misaelides P, Harja M (2015) New materials synthesized from ash under moderate conditions for removal of toxic and radioactive metals. J Radioanal Nucl Chem 303:2303–2311. https://doi.org/10.1007/s10967-014-3762-1

    CAS  Article  Google Scholar 

  17. 17.

    Sprynskyy M, Kovalchuk I, Buszewski B (2010) The separation of uranium ions by natural and modified diatomite from aqueous solution. J Hazar Mater 181:700–707. https://doi.org/10.1016/j.jhazmat.2010.05.069

    CAS  Article  Google Scholar 

  18. 18.

    Xie Y, Chen C, Ren X, Wang X, Wang H, Wang X (2019) Emerging natural and tailored materials for uranium-contaminated water treatment and environmental remediation. Prog Mater Sci 103:180–234. https://doi.org/10.1016/j.pmatsci.2019.01.005

    CAS  Article  Google Scholar 

  19. 19.

    Van O (1979) Data handbook for clay materials and other non-metallic minerals. Pergamon Press, London

    Google Scholar 

  20. 20.

    Davis L (1991) Diatomite. Ceram Bull 70:860–861

    Google Scholar 

  21. 21.

    Osmanlioglu AE (2007) Natural diatomite process for removal of radioactivity from liquid waste. Appl Radiat Isot 65:17–20. https://doi.org/10.1016/j.apradiso.2006.08.012

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Reka AA, Anovski T, Bogoevski S, Pavlovski B, Boškovski B (2014) Physical–chemical and mineralogical–petrographic examinations of diatomite from deposit near village of Rožden, Republic of Macedonia. Geol Maced 28:121–126

    Google Scholar 

  23. 23.

    Khraisheh MAM, Al-Degs YS, Mcminn WAM (2004) Remediation of wastewater containing heavy metals using raw and modified diatomite. Chem Eng J 99:177–184. https://doi.org/10.1016/j.cej.2003.11.029

    CAS  Article  Google Scholar 

  24. 24.

    Nenadovic S, Nenadovic M, Kovacevic R, Matovic L, Matovic B, Jovanovic Z, Grbovic Novakovic J (2009) Influence of diatomite microstructure on its adsorption capacity for Pb(II). Sci Sinter 41:309–317. https://doi.org/10.2298/SOS0903309N

    CAS  Article  Google Scholar 

  25. 25.

    Nenadović S, Kljajević L, Marković S, Omerašević M, Jovanović U, Andrić V, Vukanac I (2015) Natural diatomite (Rudovci, Serbia) as adsorbent for removal Cs from radioactive waste liquids. Sci Sinter 47:299–309. https://doi.org/10.2298/SOS1503299N

    Article  Google Scholar 

  26. 26.

    Salameh SIY, Khalili FI, Al-Dujaili AH (2017) Removal of U(VI) and Th(IV) from aqueous solutions by organically modified diatomaceous earth: evaluation of equilibrium, kinetic and thermodynamic data. Int J Miner Process 168:9–18. https://doi.org/10.1016/j.minpro.2017.08.007

    CAS  Article  Google Scholar 

  27. 27.

    Memedi H, Atkovska K, Lisichkov K, Marinkovski M, Kuvendziev S, Bozinovski Z, Reka AA (2016) Removal of Cr(VI) from water resources by using different raw inorganic sorbents. Qual Life 7:77–85

    Google Scholar 

  28. 28.

    Cekova B, Pavlovski B, Spasev D, Reka A (2013) Structural examinations of natural raw materials pumice and trepel from Republic of Macedonia. In: Proceedings of the XV Balkan mineral processing congress, Sozopol, Bulgaria, pp 73–75

  29. 29.

    Faghihian H, Moayed M, Firooz A, Iravani M (2013) Synthesis of a novel magnetic zeolite nanocomposite for removal of Cs+ and Sr2+ from aqueous solution: kinetic, equilibrium, and thermodynamic studies. J Colloid Interface Sci 393:445–451. https://doi.org/10.1016/j.jcis.2012.11.010

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Spedding PJ (1988) Peat. Fuel 67:883–900. https://doi.org/10.1016/0016-2361(88)90087-7

    CAS  Article  Google Scholar 

  31. 31.

    Kurková M, Klik Z, Kliková C, Havel J (2004) Humic acids from oxidized coals I. Elemental composition, titration curves, heavy metals in HA samples, nuclear magnetic resonance spectra of HAs and infrared spectroscopy. Chemosphere 54:1237–1245. https://doi.org/10.1016/j.chemosphere.2003.10.020

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Novák J, Kozler J, Janoš P, Čežíková J, Tokarová V, Madronová L (2001) Humic acids from coals of the North-Bohemian coal field—I. Preparation and characterization. React Funct Polym 47:101–109. https://doi.org/10.1016/S1381-5148(00)00076-6

    Article  Google Scholar 

  33. 33.

    Moore DM, Reynolds RC Jr (1999) X-ray diffraction and the identification and analysis of clay minerals, vol 2. Oxford University Press, New York, p 378

    Google Scholar 

  34. 34.

    Post JE, Bish DL (1989) Rietveld refinement of crystal structures using powder X-ray diffraction data. Rev Min Geochem 20:277–308

    Google Scholar 

  35. 35.

    Doebelin N, Kleeberg R (2015) Profex: a graphical user interface for the Rietveld refinement program BGMN. J Appl Crystallogr 48:1573–1580

    CAS  Article  Google Scholar 

  36. 36.

    Puigdomenech I (2004) Make equilibrium diagrams using sophisticated algorithms. Royal Institute Sweden. Te of Technology, Stockholm

    Google Scholar 

  37. 37.

    Goldberg S, Criscenti LJ, Turner DR, Davis JA, Cantrell KJ (2007) Adsorption–desorption processes in subsurface reactive transport modeling. Vadose Zo J. https://doi.org/10.2136/vzj2006.0085

    Article  Google Scholar 

  38. 38.

    Tessier A, Campbell PGC, Bisson M (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem 51:844–851. https://doi.org/10.1021/ac50043a017

    CAS  Article  Google Scholar 

  39. 39.

    Belousov P, Semenkov A, Egorova T, Romanchuk A (2019) Cesium sorption and desorption on glauconite, bentonite, zeolite and diatomite. Minerals 9:625. https://doi.org/10.3390/min9100625

    CAS  Article  Google Scholar 

  40. 40.

    Chisholm-Brause CJ, Berg JM, Little KM, Matzner RA, Morris DE (2004) Uranyl sorption by smectites: spectroscopic assessment of thermodynamic modeling. J Colloid Interface Sci 277:366–382. https://doi.org/10.1016/j.jcis.2004.04.047

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Morris DE, Chisholm-Brause CJ, Barr ME, Conradson SD, Eller PG (1994) Optical spectroscopic studies of the sorption of UO22+ species on a reference smectite. Geochim Cosmochim Acta 58:3613–4362. https://doi.org/10.1016/0016-7037(94)90153-8

    CAS  Article  Google Scholar 

  42. 42.

    Turner GD, Zachara JM, McKinley JP, Smith SC (1996) Surface-charge properties and UO22+ adsorption of a subsurface smectite. Geochim Cosmochim Acta 60:3399–3414. https://doi.org/10.1016/0016-7037(96)00169-X

    CAS  Article  Google Scholar 

  43. 43.

    Puls RW, Bohn H (1988) Sorption of cadmium, nickel, and zinc by kaolinite and montmorillonite suspensions. Soil Sci Soc Am J 52:1289–1292. https://doi.org/10.2136/sssaj1988.03615995005200050013x

    CAS  Article  Google Scholar 

  44. 44.

    Sposito G (1984) The surface chemistry of soils. Oxford University Press, Oxford

    Google Scholar 

  45. 45.

    Pabalan RT, Prikryl JD, Muller PM, Dietrich TB, Antonio S (1993) Experimental study of uranium(6+) sorption on the zeolite mineral clinoptilolite. MRS Online Proc Lib 294:777–782

    CAS  Article  Google Scholar 

  46. 46.

    Andreeva NR, Chernyavskaya NB (1982) Uranyl ion sorption by mordenite and clinoptilolite. Radiokhimiya 24:9–13

    CAS  Google Scholar 

  47. 47.

    Suib SL, Carrado KA (1985) Zeolite photochemistry: energy transfer between rare-earth and actinide ions in zeolites. Inorg Chem 24:200–202. https://doi.org/10.1021/ic00196a016

    CAS  Article  Google Scholar 

  48. 48.

    Krepelova A, Sachs S, Bernhard G (2006) Uranium(VI) sorption onto kaolinite in the presence and absence of humic acid. Radiochim Acta 94:825–833. https://doi.org/10.1524/ract.2006.94.12.825

    CAS  Article  Google Scholar 

  49. 49.

    Krepelová A, Reich T, Drebert J, Sachs S, Bernhard G (2008) Structural characterization of U(VI) surface complexes on kaolinite in the presence of humic acid using EXAFS spectroscopy. J Colloid Interface Sci 319:40–47. https://doi.org/10.1016/j.jcis.2007.11.010

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Ivanov P, Griffiths T, Bryan ND, Bozhikovb G, Dmitriev S (2012) The effect of humic acid on uranyl sorption onto bentonite at trace uranium. J Environ Monit. https://doi.org/10.1039/c2em30512g

    Article  PubMed  Google Scholar 

  51. 51.

    Murphy RJ, Lenhart JJ, Honeyman BD (1999) The sorption of thorium(IV) and uranium(VI) to hematite in the presence of natural organic matter. Colloids Surfaces A Physicochem Eng Asp 157:47–62

    CAS  Article  Google Scholar 

  52. 52.

    Schmeide BK, Pompe S, Bubner M, Heise KH, Bernhard G, Nitsche H (2000) Uranium(VI) sorption onto phyllite and selected minerals in the presence of humic acid. Radiochim Acta 88:723–728

    CAS  Article  Google Scholar 

  53. 53.

    Bacon JR, Davidson CM (2008) Is there a future for sequential chemical extraction? Analyst 133:25–46

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Zakusin S.V. and Garanina S.A. for the help with XRD diagnostic (MSU, Russia), Chernov M.S for SEM diagnostic (MSU, Russia) and Tyupina E.A for BET (MUCTR, Russia). The study was supported by the Russian Science Foundation, Project No. 18-77-00015.

Author information

Affiliations

Authors

Contributions

AS carried out the sorption experiments with the radionuclides and wrote the paper. PB and AR prepared the materials, conceived and designed the experiments and managed the work progress. AR carried out the sequential extraction experiments. YI and IT carried out the potentiometric acid–base titration and interpreted the sorption results on the organic samples. KM carried out the XPS experiments. VK collected the data for the mineral investigation and interpreted the results of the electron microscope and specific surface area analysis.

Corresponding author

Correspondence to Petr Belousov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 580 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Semenkova, A., Belousov, P., Rzhevskaia, A. et al. U(VI) sorption onto natural sorbents. J Radioanal Nucl Chem 326, 293–301 (2020). https://doi.org/10.1007/s10967-020-07318-y

Download citation

Keywords

  • Uranium
  • Sorption
  • Desorption
  • Mineral sorbents
  • Carbon-containing materials