We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Side-reaction products identified for photo-nuclear production of99Mo | SpringerLink

Side-reaction products identified for photo-nuclear production of99Mo


Production of 99Mo by the 100Mo (γ, n)99Mo reaction through the bremsstrahlung process using an electron accelerator is one of the feasible options currently pursued by several countries. Here we report experimental results on identification of side-reaction products after the irradiation of natural and enriched 100Mo targets. Side-reaction products identified include various Mo, Nb and Zr isotopes. Comparison of experimentally determined reaction production rates with those determined based on theoretical cross-sections will be presented. Moreover, activation products formed due to presence of impurities introduced during the manufacturing of the Mo targets will also be discussed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    National Research Council (2009) Medical isotope production without highly enriched uranium. The National Academies Press, Washington, DC. https://doi.org/10.17226/12569

    Book  Google Scholar 

  2. 2.

    Morley T, Gagnon K, Schaffer P, Asselin E, Zeisler S (2011) Cyclotron production of technetium. J Nucl Med 52:291

    Google Scholar 

  3. 3.

    Benard F, Buckley KR, Ruth TJ, Zeisler SK, Klug J, Hanemaayer V, Vuckovic M, Hou X, Celler A, Appiah JP, Valliant J, Kovacs MS, Schaffer P (2014) Implementation of multi-curie production of Tc-99m by conventional medical cyclotrons. J Nucl Med 55:1017–1022

    CAS  Article  Google Scholar 

  4. 4.

    Eslami M, Kakavand T (2014) Simulation of the direct production of Tc-99m at a small cyclotron. Nucl Instrum Methods Phys Res B 329:18–21

    CAS  Article  Google Scholar 

  5. 5.

    Dick D (2014) Diversification of Mo-99/Tc-99m supply. J Nucl Med 55:875–876

    CAS  Article  Google Scholar 

  6. 6.

    Manenti S, Holzwarth U, Loriggiola M, Gini L, Esposito J, Groppi F, Simonelli F (2014) The excitation functions of Mo-100(p, x)Mo-99 and Mo-100(p,2n)Tc-99m. Appl Radiat Isotopes 94:344–3448

    CAS  Article  Google Scholar 

  7. 7.

    Bennett RG, Christian JD, Petti DA, Terry WK, Grover SB (1998) A system of 99mTc production based on distributed electron accelerators and thermal separation. Nucl Technol 126:102–121

    Article  Google Scholar 

  8. 8.

    Sabel’nikov A, Maslov O, Molokanova L, Gustova M, Dmitriev S (2006) Preparation of 99Mo and 99mTc by 100Mo(γ,n) photonuclear reaction on an electron accelerator, MT- 25 microtron. Radiochemistry 48:191–194

    Article  Google Scholar 

  9. 9.

    Starovoitova V, Tchelidze L, Wells D (2014) Production of medical radioisotopes with linear accelerators. Appl Radiat Isotopes 85:39–44

    CAS  Article  Google Scholar 

  10. 10.

    Dale G, Chemerisov S, Vandegrift G. Tkac P, Woloshun K, Bach H, Heath C, Kelsey C, Bowers D, Gelis AV, Jonah C, McCrady R, Olivas E, Hurtle K, Pitcher E, Romero F, Tuzel W, Giola J, Tomei T, Wheat R, DeCroix M, Warren D, Dalmas D, Romero B, Harvey JT (2010) Global threat reduction initiative (GTRI) accelerator production of 99Mo. Los Alamos National Laboratory, LA-UR-11-, 2010 Report

  11. 11.

    Gagnon K, Wilson JS, Holt CMB, Abrams DN, McEwan AJB, Mitlin D, McQuarrie SA (2012) Cyclotron production of 99mTc: recycling of enriched 100Mo metal targets. Appl Radiat Isotopes 70:1685–1690

    CAS  Article  Google Scholar 

  12. 12.

    Tkac P, Vandegrift GF (2015) Recycle of enriched Mo targets for economic production of 99Mo/99mTc medical isotope without use of enriched uranium. J Radioanal Nucl Chem 308:205–212

    Article  Google Scholar 

  13. 13.

    Tkac P, Momen A, Wardle K, Copple JM, Brown MA, Vandegrift GF (2017) MOEX: Solvent extraction approach for recycling enriched 98Mo/100Mo material. Sep Sci Technol 53:1856–1863

    Article  Google Scholar 

  14. 14.

    Kozak PA, Tkac P, Wardle KE, Brown MA, Vandegrift GF (2020) Demonstration of the MOEX Process Using Additive-Manufacturing-Fabricated Annular Centrifugal Contactors. Solvent Extr Ion Exchange 38:120–131

    CAS  Article  Google Scholar 

  15. 15.

    Food US and Drug Administration (FDA) (2018). FDA and NRC pave way for the first domestic supply of the most commonly used medical isotope in diagnostic imaging, news release. www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm595990.htm

  16. 16.

    Beil H, Bergere R, Carlos P, Lepretre A, De Miniac A, Veyssiere A (1974) A study of the photoneutron contribution to the giant dipole resonance in doubly even Mo isotopes. Nucl Phys A227:427–449

    Article  Google Scholar 

  17. 17.

    Martin T, Harahsheh T, Munoz B, Hamoui Z, Clanton R, Douglas J, Brown P, Akabani G (2017) Production of 99Mo/99mTc via photoneutron reaction using natural molybdenum and enriched 100Mo: part 1, theoretical analysis. J Radioanal Nucl Chem 314:1051–1062

    CAS  Article  Google Scholar 

  18. 18.

    Ishkhanov BS, Kapitonov IM, Kuznetsov AA, Orlin VN (2014) Photodisintegration of molybdenum isotopes. Mosc U Phys B+ 69:37–46

    Article  Google Scholar 

  19. 19.

    Kelsey CT, Chemerisov SD, Dale GE, Harvey J, Tkac P, Vandegrift GF (2011) MCNPX-CINDER’90 simulation of photonuclear Mo-99 production experiments. Los Alamos National Laboratory LA-UR-11-10487

  20. 20.

    Takeda T, Fujiwara M, Kurosawa M, Takahashi N, Tamura M, Kawabata T, Fujikawa Y, Suzuki KN, Abe N, Kubota T, Takahashi T (2018) 99mTc production via the (γ, n) reaction on natural Mo. J Radioanal Nucl Chem 318:811–821

    CAS  Article  Google Scholar 

  21. 21.

    Inagaki M, Sekimoto S, Tadokoro T, Ueno Y, Kani Y, Ohtsuki T (2020) Production of 99Mo/99mTc by photonuclear reaction using a natMoO3 target. J Radioanal Nucl Chem 324:681–686

    CAS  Article  Google Scholar 

  22. 22.

    Alford K, Chemerisov S, Gromov R, Hafenrichter L, Jonah CD, Tafoya R, Wesolowski K, Brown D, Forknall S, Gardner J, Macrillo D, Zulpo A (2015) Low energy accelerator facility upgrade and test. In: Proceedings of 12th international topical meeting on the nuclear application of accelerators, Washington D.C

  23. 23.

    Tkac P, Rotsch D, Stepinski D, Makarashvili V, Vandegrift GF (2015) Optimization of the processing of Mo disks. Argonne National Laboratory, ANL/NE-15/46

  24. 24.

    Chemerisov S, Bailey J, Heltemes T, Jonah C, Gromov R, Makarashvili V, Tkac P, Rotsch D, Virgo M, Vandegrift GF (2016) Results of the six-and-a-half day electron-accelerator irradiation of enriched Mo-100 targets for the production of Mo-99. Argonne National Laboratory DOI10.2172/1342168

Download references


Work supported by the U.S. Department of Energy, NNSA’s Material Management and Minimization office, under Contract DE-AC02-06CH11357. Argonne National Laboratory is operated for the U.S. Department of Energy by UChicago Argonne, LLC.

Author information



Corresponding author

Correspondence to Peter Tkac.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tkac, P., Chemerisov, S., Gromov, R. et al. Side-reaction products identified for photo-nuclear production of99Mo. J Radioanal Nucl Chem 326, 543–553 (2020). https://doi.org/10.1007/s10967-020-07307-1

Download citation


  • Molybdenum
  • Mo-99
  • Accelerator production
  • Side-reaction products
  • Monte Carlo