Radiation effect on ionic liquid [Hbet][Tf2N] for Nd2O3 separation from simulated spent nuclear fuels

Abstract

Radiation-chemical stability of ionic liquid [Hbet][Tf2N] has been investigated under gamma irradiation for Nd2O3 separation from simulated spent nuclear fuels. It was found that Nd2O3 dissolution decreases with increasing absorbed dose of [Hbet][Tf2N]. However, the dissolution ability of irradiated [Hbet][Tf2N] to Nd2O3 can be regenerated after washing with water. The radiolytic products of [Hbet][Tf2N] were identified by EMI–MS, and [Hbet]+ group occurred a little radiolysis during irradiation. The UV–Visible spectra shown an increase in absorption around 275 nm probably due to the radiolysis of [Hbet][Tf2N]. FTIR spectra shown little variation around 1730 cm−1 under high radiation dose.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Shkrob IA, Marin TW, Jensen MP (2014) Ionic liquid based separations of trivalent lanthanide and actinide ions. Ind Eng Chem Res 53:3641–3653

    CAS  Article  Google Scholar 

  2. 2.

    Sun X, Luo H, Dai S (2012) Ionic liquids-based extraction: a promising strategy for the advanced nuclear fuel cycle. Chem Rev 112:2100–2128

    CAS  Article  Google Scholar 

  3. 3.

    Mohapatra PK (2017) Actinide ion extraction using room temperature ionic liquids: opportunities and challenges for nuclear fuel cycle applications. Dalton Trans 46:1730–1747

    CAS  Article  Google Scholar 

  4. 4.

    Takao K, Bell TJ, Ikeda Y (2013) Actinide chemistry in ionic liquids. Inorg Chem 52:3459–3472

    CAS  Article  Google Scholar 

  5. 5.

    Long K, Goff G, Runde W (2014) Unusual redox stability of neptunium in the ionic liquid [Hbet][Tf2N]. Chem Commun 50:7766–7769

    CAS  Article  Google Scholar 

  6. 6.

    Szreder T, Skrzypczak A (2016) Influence of the benzyl substituent on radiation chemistry of selected ionic liquids: gaseous products analysis. J Radioanal Nucl Chem 307:195–202

    CAS  Article  Google Scholar 

  7. 7.

    Scheifinger F, Habibi M, Zeynolabedini E, Pless C, Wallner G (2019) Radionuclide extraction with different ionic liquids. J Radioanal Nucl Chem 322:1841–1848

    Article  Google Scholar 

  8. 8.

    Dupont D, Renders E, Binnemans K (2016) Alkylsulfuric acid ionic liquids: a promising class of strongly acidic room-temperature ionic liquids. Chem Commun 52(25):4640–4643

    CAS  Article  Google Scholar 

  9. 9.

    Amarasekara AS (2016) Acidic ionic liquids. Chem Rev 116(10):6133–6183

    CAS  Article  Google Scholar 

  10. 10.

    Nockemann P, Thijs B, Pittois S, Thoen J, Glorieux C, Van Hecke K, Van Meervelt L, Kirchner B, Binnemans K (2006) Task-specific ionic liquid for solubilizing metal oxides. J Phys Chem B 110:20978–20992

    CAS  Article  Google Scholar 

  11. 11.

    Nockemann P, Thijs B, Parac-Vogt TN, Van Hecke K, Van Meervelt L, Tinant B, Hartenbach I, Schleid T, Ngan VT, Nguyen MT, Binnemans K (2008) Carboxyl-functionalized task-specific ionic liquids for solubilizing metal oxides. Inorg Chem 47:9987–9999

    CAS  Article  Google Scholar 

  12. 12.

    Li H, Li D, Wang Y, Ru Q (2011) A series of carboxylic-functionalized ionic liquids and their solubility for lanthanide oxides. Chem Asian J 6(6):1443–1449

    CAS  Article  Google Scholar 

  13. 13.

    Nockemann P, Thijs B, Lunstroot K, Parac-Vogt TN, Görller-Walrand C, Binnemans K, Van Hecke K, Van Meervelt L, Nikitenko S, Daniels J, Hennig C, Van Deun R (2009) Speciation of rare-earth metal complexes in ionic liquids: a multiple-technique approach. Chem Eur J 15:1449–1461

    CAS  Article  Google Scholar 

  14. 14.

    Dupont D, Binnemans K (2015) Rare-earth recycling using a functionalized ionic liquid for the selective dissolution and revalorization of Y2O3:Eu3+ from lamp phosphor waste. Green Chem 17:856–868

    CAS  Article  Google Scholar 

  15. 15.

    Dupont D, Binnemans K (2015) Recycling of rare earths from NdFeB magnets using a combined leaching/extraction system based on the acidity and thermomorphism of the ionic liquid [Hbet][Tf2N]. Green Chem 17:2150–2163

    CAS  Article  Google Scholar 

  16. 16.

    Davris P, Balomenos E, Panias D, Paspaliaris I (2016) Selective leaching of rare earth elements from bauxite residue (red mud), using a functionalized hydrophobic ionic liquid. Hydrometallurgy 164:125–135

    CAS  Article  Google Scholar 

  17. 17.

    Hoogerstraete TV, Onghena B, Binnemans K (2013) Homogeneous liquid–liquid extraction of metal ions with a functionalized ionic liquid. J Phys Chem Lett 4(10):1659–1663

    CAS  Article  Google Scholar 

  18. 18.

    Davris P, Marinos D, Balomenos E, Alexandri A, Gregou M, Panias D, Paspaliaris I (2018) Leaching of rare earth elements from ‘Rödberg’ ore of Fen carbonatite complex deposit, using the ionic liquid [Hbet][Tf2N]. Hydrometallurgy 175:20–27

    CAS  Article  Google Scholar 

  19. 19.

    Onghena B, Borra CR, Gerven TV, Binnemans K (2017) Recovery of scandium from sulfation-roasted leachates of bauxite residue by solvent extraction with the ionic liquid betainium bis(trifluoromethylsulfonyl)imide. Sep Purif Technol 176:208–219

    CAS  Article  Google Scholar 

  20. 20.

    Dai Y, Cao B, Zhong S, Xie G, Wang Y, Liu Y, Zhang Z, Liu Y, Cao X (2019) Homogeneous liquid–liquid extraction of europium from aqueous solution with ionic liquids. J Radioanal Nucl Chem 319:1219–1225

    CAS  Article  Google Scholar 

  21. 21.

    Fan FL, Qin Z, Cao SW, Tan CM, Huang QG, Chen DS, Wang JR, Yin XJ, Xu C, Feng XG (2019) Highly efficient and selective dissolution separation of fission products by an ionic liquid [Hbet][Tf2N]: a new approach to spent nuclear fuel recycling. Inorg Chem 58(1):603–609

    CAS  Article  Google Scholar 

  22. 22.

    Wishart JF, Shkrob IA (2009) The radiation chemistry of ionic liquids and its implications for their use in nuclear fuel processing. In: Rogers RD, Plechkova NV, Seddon KR (eds) Ionic liquids: from knowledge to application. American Chemical Society, Washington, DC, pp 119–134

    Google Scholar 

  23. 23.

    Allen D, Baston G, Bradley AE, Gorman T, Haile A, Hamblett I, Hatter JE, Healey MJF, Hodgson B, Lewin R, Lovell KV, Newton B, Pitner WR, Rooney DW, Sanders D, Seddon KR, Sims HE, Thied RC (2002) An investigation of the radiochemical stability of ionic liquids. Green Chem 4:152–158

    CAS  Article  Google Scholar 

  24. 24.

    Rouzo GL, Lamouroux C, Dauvois V, Dannoux A, Legand S, Durand D, Moisy P, Moutiers G (2009) Anion effect on radiochemical stability of room-temperature ionic liquids under gamma irradiation. Dalton Trans 31:6175–6184

    Article  Google Scholar 

  25. 25.

    Dhiman SB, Goff GS, Runde W, LaVerne JA (2014) Gamma and heavy ion radiolysis of ionic liquids: a comparative study. J Nucl Mater 453:182–187

    CAS  Article  Google Scholar 

  26. 26.

    Berthon L, Nikitenko SI, Bisel I, Berthon C, Faucon M, Saucerotte B, Zorz N, Moisy P (2006) Influence of gamma irradiation on hydrophobic room-temperature ionic liquids [BuMeIm]PF6 and [BuMeIm](CF3SO2)2N. Dalton Trans 21:2526–2534

    Article  Google Scholar 

  27. 27.

    Yuan L, Xu C, Peng J, Xu L, Zhai M, Li J, Wei G, Shen X (2009) Identification of the radiolytic product of hydrophobic ionic liquid [C4mim][Tf2N] during removal of Sr2+ from aqueous solution. Dalton Trans 38:7873–7875

    Article  Google Scholar 

  28. 28.

    Yuan L, Peng J, Xu L, Zhai M, Li J, Wei G (2009) Radiation-induced darkening of ionic liquid [C4mim][Tf2N] and its decoloration. Radiat Phys Chem 78:1133–1136

    CAS  Article  Google Scholar 

  29. 29.

    Jayachandran K, Gupta R, Vats BG, Kannan S (2018) Extraction and electrochemical investigations of Pu(IV) employing green solvent system containing new bifunctional ligand and Bmim[NTf2] ionic liquid. J Radioanal Nucl Chem 318:1009–1014

    CAS  Article  Google Scholar 

  30. 30.

    Ao Y, Chen J, Wang Y, Chen H, Li J, Zhai M (2017) Radiation effect of carboxyl-functionalized task-specific ionic liquids on UO22+ removal: experimental study with DFT validation. J Phys Chem B 121(8):1893–1899

    CAS  Article  Google Scholar 

  31. 31.

    Shkrob IA, Marin TW, Wishart JF, Grills David C (2014) Radiation stability of cations in ionic liquids. 5. Task-specific ionic liquids consisting of biocompatible cations and the puzzle of radiation hypersensitivity. J Phys Chem B 118(35):10477–10492

    CAS  Article  Google Scholar 

  32. 32.

    Shkrob IA, Marin TW (2013) Radiation stability of cations in ionic liquids. 4. Task-specific antioxidant cations for nuclear separations and photolithography. J Phys Chem B 117:14797–14807

    CAS  Article  Google Scholar 

  33. 33.

    Rao ChJ, Venkatesan KA, Tata BVR, Nagarajan K, Srinivasan TG, Rao PRV (2011) Radiation stability of some room temperature ionic liquids. Radiat Phys Chem 80:643–649

    CAS  Article  Google Scholar 

  34. 34.

    Romdhana H, Mejri A, Hatira FB, Hamzaoui AH (2017) A study of the fractionation dose effect on the radiation response of Windose B3 dosimeter. MAPAN J Metrol Soc India 32(4):305–310

    Google Scholar 

  35. 35.

    Qi MY, Wu GZ, Li QM, Luo YS (2008) γ-Radiation effect on ionic liquid [bmim][BF4]. Radiat Phys Chem 77:877–883

    CAS  Article  Google Scholar 

  36. 36.

    Kiefer J, Fries J, Leipertz A (2007) Experimental vibrational study of imidazolium-based ionic liquids: raman and infrared spectra of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide and 1-ethyl-3-methylimidazolium ethylsulfate. Appl Spectrosc 61:1306–1311

    CAS  Article  Google Scholar 

  37. 37.

    Noack K, Schulz PS, Paape N, Kiefer J, Wasserscheid P, Leipertz A (2010) The role of the C2 position in interionic interactions of imidazolium based ionic liquids: a vibrational and NMR spectroscopic study. Phys Chem Chem Phys 12:14153–14161

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This research is supported by the Strategic Priority Research Program of Chinese Academy of Sciences (Nos. XDA21010202, XDA03010402), Young Scholar of CAS “Light of West China” Program for Fang-li Fan (No. 2016-84) and the Natural Sciences Foundation of Gansu Province (No. 17JR5RA298).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Fang-Li Fan or Zhi Qin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fan, F., Chen, D., Huang, Q. et al. Radiation effect on ionic liquid [Hbet][Tf2N] for Nd2O3 separation from simulated spent nuclear fuels. J Radioanal Nucl Chem (2020). https://doi.org/10.1007/s10967-020-07306-2

Download citation

Keywords

  • Ionic liquid
  • Radiation stability
  • Spent nuclear fuel
  • Dissolution separation