Skip to main content
Log in

Development of mesoporous γ-alumina from aluminium foil waste for 99Mo/99mTc generator

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Mesoporous alumina (MA) has been produced from aluminium foil waste, and its performance as a sorbent in a 99Mo/99mTc generator has been evaluated. The resulting MA demonstrated excellent properties with the specific surface area of 209.8 m2 g−1 and Mo adsorption capacity of 60.2 ± 1.5 mg g−1. It was able to release 99mTc with a high yield percentage and to comply with the required standard. Our successful effort on the synthesis of aluminium foil based alumina sorbent has opened the possibility of further work on the development of waste-based alumina for separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. van Wyngaardt WM, Tobin SM, Lee S et al (2020) Primary standardisation of technetium-99m by liquid scintillation coincidence counting. Appl Radiat Isot 156:108935

    PubMed  Google Scholar 

  2. Saptiama I, Lestari E, Sarmini E et al (2016) Development of 99Mo/99mTc generator system for production of medical radionuclide 99mTc using a neutron-activated 99Mo and zirconium based material (ZBM) as its adsorbent. Atom Indones 42:115–121

    Google Scholar 

  3. Blaauw M, Ridikas D, Baytelesov S et al (2017) Estimation of 99Mo production rates from natural molybdenum in research reactors. J Radioanal Nucl Chem 311:409–418

    CAS  PubMed  Google Scholar 

  4. Mostafa M, Atef M, El-Amir MA (2017) Preparation and performance studies of 99Mo/99mTc column generators based on nano zirconium molybdate. J Radioanal Nucl Chem 314:1683–1694

    CAS  Google Scholar 

  5. Chattopadhyay S, Das SS, Alam MN et al (2017) Preparation of 99Mo/99mTc generator based on cross-linked chitosan polymer using low-specific activity (n,γ)99Mo. J Radioanal Nucl Chem 313:647–653

    CAS  Google Scholar 

  6. Chattopadhyay S, Saha Das S, Barua L et al (2019) A compact solvent extraction based 99Mo/99mTc generator for hospital radiopharmacy. Appl Radiat Isot 143:41–46

    CAS  PubMed  Google Scholar 

  7. Zhang ZS, Fu XP, Wang WW et al (2018) Promoted porous Co3O4–Al2O3 catalysts for ammonia decomposition. Sci China Chem 61:1389–1398

    CAS  Google Scholar 

  8. Saptiama I, Kaneti YV, Suzuki Y et al (2017) Mesoporous alumina as an effective adsorbent for molybdenum (Mo) toward instant production of radioisotope for medical use. Bull Chem Soc Jpn 90:1174–1179

    CAS  Google Scholar 

  9. Kaneti YV, Salunkhe RR, Wulan Septiani NL et al (2018) General template-free strategy for fabricating mesoporous two-dimensional mixed oxide nanosheets via self-deconstruction/reconstruction of monodispersed metal glycerate nanospheres. J Mater Chem A 6:5971–5983

    CAS  Google Scholar 

  10. Pandey M, Mishra P, Saha D et al (2014) Development of commercial trace moisture sensor: a detailed comparative study on microstructural and impedance measurements of two phases of alumina. Electron Mater Lett 10:357–362

    CAS  Google Scholar 

  11. Laatar F, Harizi A, Zarroug A et al (2017) Novel CdSe nanorods/porous anodic alumina nanocomposite-based ethanol sensor: sensitivity enhancement by visible light illumination. J Mater Sci Mater Electron 28:12259–12267

    CAS  Google Scholar 

  12. Vignesh Raj S, Rajkumar M, Meenakshi SN et al (2018) Synthesis and characterisation of hydroxyapatite/alumina ceramic nanocomposites for biomedical applications. Bull Mater Sci 41:93

    Google Scholar 

  13. Rahmati M, Mozafari M (2019) Biocompatibility of alumina-based biomaterials—a review. J Cell Physiol 234:3321–3335

    CAS  PubMed  Google Scholar 

  14. Mahinroosta M, Allahverdi A, Dong P et al (2019) Green template-free synthesis and characterisation of mesoporous alumina as a high value-added product in aluminum black dross recycling strategy. J Alloys Compd 792:161–169

    CAS  Google Scholar 

  15. Chakravarty R, Ram R, Mishra R et al (2013) Mesoporous alumina (MA) based double-column approach for development of a clinical scale 99Mo/99mTc generator using (n,γ) 99Mo: an enticing application of nanomaterial. Ind Eng Chem Res 52:11673–11684

    CAS  Google Scholar 

  16. Chakravarty R, Bahadur J, Lohar S et al (2019) Solid state synthesis of mesoporous alumina: a viable strategy for preparation of an advanced nanosorbent for 99Mo/99mTc generator technology. Microporous Mesoporous Mater 287:271–279

    CAS  Google Scholar 

  17. Saptiama I, Kaneti YV, Suzuki Y et al (2018) Template-free fabrication of mesoporous alumina nanospheres using post-synthesis water-ethanol treatment of monodispersed aluminium glycerate nanospheres for molybdenum adsorption. Small 14:1800474

    Google Scholar 

  18. Saptiama I, Kaneti YV, Yuliarto B et al (2019) Biomolecule-assisted synthesis of hierarchical multilayered boehmite and alumina nanosheets for enhanced molybdenum adsorption. Chem A Eur J 25:4843–4855

    CAS  Google Scholar 

  19. Li G, Wang W, Long T et al (2014) A general and facile method to prepare uniform gamma-alumina hollow microspheres from waste oil shale ash. Mater Lett 133:143–146

    CAS  Google Scholar 

  20. Chotisuwan S, Sirirak A, Har-Wae P et al (2012) Mesoporous alumina prepared from waste aluminum cans and used as catalytic support for toluene oxidation. Mater Lett 70:125–127

    CAS  Google Scholar 

  21. Yan F, Jiang J, Liu N et al (2018) Green synthesis of mesoporous γ-Al2O3 from coal fly ash with simultaneous on-site utilization of CO2. J Hazard Mater 359:535–543

    CAS  PubMed  Google Scholar 

  22. Osman AI, Abu-Dahrieh JK, McLaren M et al (2017) A facile green synthetic route for the preparation of highly active γ-Al2O3 from aluminum foil waste. Sci Rep 7:3593

    PubMed  PubMed Central  Google Scholar 

  23. Osman AI, Abu-Dahrieh JK, Laffir F et al (2016) A bimetallic catalyst on a dual component support for low temperature total methane oxidation. Appl Catal B Environ 187:408–418

    CAS  Google Scholar 

  24. Valenzuela G, Környei J, Mikolajczak M et al (2008) Technetium-99m radiopharmaceuticals: manufacture of kits. IAEA, Vienna

    Google Scholar 

  25. Shah SQ, Ullah N (2019) Pre-clinical evaluation of 99mTc-ethambutol, an alternative tuberculosis diagnostic tool. Radiochemistry 61:233–237

    CAS  Google Scholar 

  26. Xu N, Liu Z, Dong Y et al (2016) Controllable synthesis of mesoporous alumina with large surface area for high and fast fluoride removal. Ceram Int 42:15253–15260

    CAS  Google Scholar 

  27. Wu W, Wan Z, Chen W et al (2015) Synthesis of mesoporous alumina with tunable structural properties. Microporous Mesoporous Mater 217:12–20

    CAS  Google Scholar 

  28. Afshar Taromi A, Kaliaguine S (2017) Synthesis of ordered mesoporous γ-alumina – Effects of calcination conditions and polymeric template concentration. Microporous Mesoporous Mater 248:179–191

    CAS  Google Scholar 

  29. Yacob AR, Bello AM, Kabo KS (2016) The effect of polyoxyethylene (40) stearate surfactant on novel synthesis of mesoporous γ-alumina from Kano kaolin. Arab J Chem 9:297–304 

    CAS  Google Scholar 

  30. Copeland JR, Santillan IA, Schimming SM et al (2013) Surface interactions of glycerol with acidic and basic metal oxides. J Phys Chem C 117:21413–21425

    CAS  Google Scholar 

  31. Cai W, Tan L, Yu J et al (2014) Synthesis of amino-functionalized mesoporous alumina with enhanced affinity towards Cr(VI) and CO2. Chem Eng J 239:207–215 

    CAS  Google Scholar 

  32. Zhang L, Jiao X, Chen D et al (2011) γ-AlOOH nanomaterials with regular shapes: Hydrothermal fabrication and Cr2O72- adsorption. Eur J Inorg Chem 2011:5258–5264

    CAS  Google Scholar 

  33. Djebaili K, Mekhalif Z, Boumaza A et al (2015) XPS, FTIR, EDX, and XRD analysis of Al2O3 scales grown on PM2000 alloy. J Spectrosc 2015:1–16

    Google Scholar 

  34. Temuujin J, Jadambaa T, Mackenzie KJD et al (2000) Thermal formation of corundum from aluminium hydroxides prepared from various aluminium salts. Bull Mater Sci 23:301–304

    CAS  Google Scholar 

  35. Yang Q (2011) Synthesis of γ-Al2O3 nanowires through a boehmite precursor route. Bull Mater Sci 34:239–244 

    CAS  Google Scholar 

  36. Alex TC (2014) An insight into the changes in the thermal analysis curves of boehmite with mechanical activation. J Therm Anal Calorim 117:163–171

    CAS  Google Scholar 

  37. Huang H, Wang L, Cai Y et al (2015) Facile fabrication of urchin-like hollow boehmite and alumina microspheres with a hierarchical structure via Triton X-100 assisted hydrothermal synthesis. CrystEngComm 17:1318–1325

    CAS  Google Scholar 

  38. Liem PH, Tran HN, Sembiring TM (2015) Design optimization of a new homogeneous reactor for medical radioisotope Mo-99/Tc-99m production. Prog Nucl Energy 82:191–196

    CAS  Google Scholar 

  39. Uccelli L, Boschi A, Pasquali M et al (2013) Influence of the generator in-growth time on the final radiochemical purity and stability of radiopharmaceuticals. Sci Technol Nucl Install 2013:1–7

    Google Scholar 

  40. Maioli C, Lucignani G, Strinchini A et al (2017) Quality control on radiochemical purity in technetium-99m radiopharmaceuticals labelling : three years of experience on 2280 procedures. Acta Biomed 88:49–56

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Papagiannopoulou D (2017) Technetium-99m radiochemistry for pharmaceutical applications. J Label Compd Radiopharm 60:502–520

    CAS  Google Scholar 

  42. Singh N, Bhatnagar A (2010) Clinical evaluation of efficacy of 99mTc-ethambutol in tubercular lesion imaging. Tuberc Res Treat 2010:1–9

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Ministry of Research Technology and Higher Education of Indonesia for its financial support through INSINAS programme (project number: 06/INS-1/PPK-E4/2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miftakul Munir.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Munir, M., Sriyono, Abidin et al. Development of mesoporous γ-alumina from aluminium foil waste for 99Mo/99mTc generator. J Radioanal Nucl Chem 326, 87–96 (2020). https://doi.org/10.1007/s10967-020-07288-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07288-1

Keywords

Navigation