Skip to main content
Log in

MCNPX simulation and experimental tests of the tagged neutron system for explosive detection in walls

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

An experimental detection system based on tagged neutron method was developed for detecting the explosives embedded in a concrete wall. The simulant samples of TNT and ammonium nitrate were tested by this system under different conditions. The experimental results were compared with the MCNPX code simulation results and have good consistency. On this basis, the simulation of RDX and Tetryl explosives hidden in different thickness walls was carried out. The simulation results show that the experimental system can detect the 300 g explosive hidden in a wall with a thickness of no more than 10 cm by using the ratio of delta and its standard deviation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hättenschwiler N, Sterchi Y, Mendes M, Schwaninger A (2018) Automation in airport security X-ray screening of cabin baggage: examining benefits and possible implementations of automated explosives detection. Appl Ergon 72:58–68. https://doi.org/10.1016/j.apergo.2018.05.003

    Article  PubMed  Google Scholar 

  2. Perot B, Carasco C, Bernard S et al (2007) Development of the EURITRACK tagged neutron inspection system. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 261:295–298. https://doi.org/10.1016/j.nimb.2007.03.073

    Article  CAS  Google Scholar 

  3. Runkle RC, White TA, Miller EA et al (2009) Photon and neutron interrogation techniques for chemical explosives detection in air cargo: a critical review. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 603:510–528. https://doi.org/10.1016/j.nima.2009.02.015

    Article  CAS  Google Scholar 

  4. Carasco C, Perot B, Bernard S et al (2008) In-field tests of the EURITRACK tagged neutron inspection system. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 588:397–405. https://doi.org/10.1016/j.nima.2008.01.097

    Article  CAS  Google Scholar 

  5. El Kanawati W, Perot B, Carasco C et al (2011) Acquisition of prompt gamma-ray spectra induced by 14 MeV neutrons and comparison with Monte Carlo simulations. Appl Radiat Isot 69:732–743. https://doi.org/10.1016/j.apradiso.2011.01.010

    Article  CAS  PubMed  Google Scholar 

  6. Perot B, Carasco C, Bernard S et al (2008) Measurement of 14 MeV neutron-induced prompt gamma-ray spectra from 15 elements found in cargo containers. Appl Radiat Isot 66:421–434. https://doi.org/10.1016/j.apradiso.2007.11.011

    Article  CAS  PubMed  Google Scholar 

  7. Carasco C, Perot B, Mariani A et al (2010) Material characterization in cemented radioactive waste with the associated particle technique. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 619:432–435. https://doi.org/10.1016/j.nima.2009.10.085

    Article  CAS  Google Scholar 

  8. Mikhail N. Chubarov (2002) A neutron-gamma method and apparatus for detection and identification of hidden objects in brick (concrete) walls. pp 147–148. https://doi.org/10.1007/978-94-010-0397-1_15

  9. Fang X, Li D, Xie L (2011) A composite detection and disposal scheme for explosive embedded in building. Mod Appl Sci 5:136–140. https://doi.org/10.5539/mas.v5n3p136

    Article  Google Scholar 

  10. Sudac D, Nad K, Obhodas J, Valkovic V (2013) Monitoring of concrete structures by using the 14 MeV tagged neutron beams. Radiat Meas 59:193–200. https://doi.org/10.1016/j.radmeas.2013.06.001

    Article  CAS  Google Scholar 

  11. El Kanawati W, Perot B, Carasco C et al (2011) Conversion factors from counts to chemical ratios for the EURITRACK tagged neutron inspection system. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 654:621–629. https://doi.org/10.1016/j.nima.2011.05.076

    Article  CAS  Google Scholar 

  12. Valkovic V, Sudac D, Obhodas J et al (2013) The use of alpha particle tagged neutrons for the inspection of objects on the sea floor for the presence of explosives. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 703:133–137. https://doi.org/10.1016/j.nima.2012.11.096

    Article  CAS  Google Scholar 

  13. Valkovic V, Sudac D, Matika D (2010) Fast neutron sensor for detection of explosives and chemical warfare agents. Appl Radiat Isot 68:888–892. https://doi.org/10.1016/j.apradiso.2009.09.055

    Article  CAS  PubMed  Google Scholar 

  14. Eleon C, Perot B, Carasco C (2010) Preliminary Monte Carlo calculations for the UNCOSS neutron-based explosive detector. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 619:234–239. https://doi.org/10.1016/j.nima.2009.10.128

    Article  CAS  Google Scholar 

  15. Han MC, Jing SW, Gao YD, Guo Y (2019) Experiment and MCNP simulation of a portable tagged neutron inspection system for detection of explosives in a concrete wall. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 929:156–161. https://doi.org/10.1016/j.nima.2019.03.069

    Article  CAS  Google Scholar 

  16. http://www.vniia.ru/eng/ng/docs/ing_27eng.pdf

  17. Pelowitz DB (2011) Mcnpx Tm user’ s manual

  18. Carasco C (2010) MCNP output data analysis with ROOT (MODAR). Comput Phys Commun 181:2210–2211. https://doi.org/10.1016/j.cpc.2010.08.028

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Science and Technology Development Project of Jilin Province of China [20190303101SF], the Education Department Project of Sichuan Province of China [16ZA0325], and the Criminal Investigation Project in Key laboratory of Sichuan higher education-Criminal Science and Technology Laboratory (Sichuan Police College) [2018YB04].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Wei Jing.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, H., Li, C., Gao, YD. et al. MCNPX simulation and experimental tests of the tagged neutron system for explosive detection in walls. J Radioanal Nucl Chem 326, 201–208 (2020). https://doi.org/10.1007/s10967-020-07282-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07282-7

Keywords

Navigation