Skip to main content
Log in

Manganese ferrite/porous graphite carbon nitride composites for U(VI) adsorption from aqueous solutions

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Manganese ferrite/porous graphite carbon nitride composites (MnFe2O4/porous g-C3N4[PCN]) were synthesized by template-assisted thermal polymerization and hydrothermal method and applied for high adsorption of U(VI) from aqueous solution. Results indicated that the maximum adsorption capacity of MnFe2O4/PCN (MPCN) was 367.9 mg g−1 under optimum conditions (pH = 5, t = 15 min, and T = 308 K), which was higher than that of g-C3N4 (185.1 mg g−1). Adsorption was well fitted with Langmuir isotherm model and pseudo-second-order kinetic equation. Thermodynamic analysis showed that adsorption is an endothermic, spontaneous process. X-ray photoelectron spectra revealed that amino and metal oxygen groups are involved in the complexing adsorption of uranium. Adsorption efficiency remained 92.5% after five adsorption–desorption cycles. The results of this paper indicated that MnFe2O4/PCN composites can be efficiently used as an ideal material for U(VI) adsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Gu P, Zhang S, Li X et al (2018) Recent advances in layered double hydroxide-based nanomaterials for the removal of radionuclides from aqueous solution. Environ Pollut 240:493–505

    CAS  PubMed  Google Scholar 

  2. Kou Y, Zhang L, Liu B et al (2019) Phosphonate modified MoS2 composite material for effective adsorption of uranium(VI) in aqueous solution. J Radioanal Nucl Chem 323(1):641–649

    Google Scholar 

  3. Jiaqi Z, Yimin D, Danyang L et al (2019) Synthesis of carboxyl-functionalized magnetic nanoparticle for the removal of methylene blue. Colloids Surf A 572(58–66):22

    Google Scholar 

  4. Bao S, Yang W, Wang Y et al (2020) One-pot synthesis of magnetic graphene oxide composites as an efficient and recoverable adsorbent for Cd(II) and Pb(II) removal from aqueous solution. J Hazard Mater 381:120914

    CAS  PubMed  Google Scholar 

  5. Xu W, Song Y, Dai K et al (2018) Novel ternary nanohybrids of tetraethylenepentamine and graphene oxide decorated with MnFe2O4 magnetic nanoparticles for the adsorption of Pb(II). J Hazard Mater 358:337–345

    CAS  PubMed  Google Scholar 

  6. Fang Q, Duan S, Zhang J et al (2017) Dual shelled Fe3O4/polydopamine hollow microspheres as an effective Eu(III) adsorbent. J Mater Chem A 5(6):2947–2958

    CAS  Google Scholar 

  7. Fang JUN, Gu Z, Gang D et al (2007) Cr(VI) removal from aqueous solution by activated carbon coated with quaternized poly (4-vinylpyridine). Environ Sci Technol 41(13):4748–4753

    CAS  PubMed  Google Scholar 

  8. Beygli RA, Mohaghegh N, Rahimi E (2019) Metal ion adsorption from wastewater by g-C3N4 modified with hydroxyapatite: a case study from Sarcheshmeh acid mine drainage. Res Chem Intermed 45(4):2255–2268

    Google Scholar 

  9. Xiong C, Wang S, Sun W et al (2019) Selective adsorption of Pb(II) from aqueous solution using nanosilica functionalized with diethanolamine: equilibrium, kinetic and thermodynamic. Microchem J 146:270–278

    CAS  Google Scholar 

  10. Gao H, Sun Y, Zhou J et al (2013) Mussel-inspired synthesis of polydopamine-functionalized graphene hydrogel as reusable adsorbents for water purification. ACS Appl Mater Interfaces 5(2):425–432

    CAS  PubMed  Google Scholar 

  11. Zhu K, Chen C, Xu H et al (2017) Cr(VI) reduction and immobilization by core-double-shell structured magnetic polydopamine @ zeolitic idazolate frameworks-8 microspheres. ACS Sustain Chem Eng 5(8):6795–6802

    CAS  Google Scholar 

  12. Liu H, Zhou Y, Yang Y et al (2019) Synthesis of polyethylenimine/graphene oxide for the adsorption of U(VI) from aqueous solution. Appl Surf Sci 471:88–95

    CAS  Google Scholar 

  13. Zhang Y, Pan Q, Chai G et al (2013) Synthesis and luminescence mechanism of multicolor-emitting g-C3N4 nanopowders by low temperature thermal condensation of melamine. Sci Rep 3:1943

    PubMed  PubMed Central  Google Scholar 

  14. Chen Y, Lin B, Wang H et al (2016) Surface modification of g-C3N4 by hydrazine: simple way for noble-metal free hydrogen evolution catalysts. Chem Eng J 286:339–346

    CAS  Google Scholar 

  15. Panneri S, Ganguly P, Nair BN et al (2017) Role of precursors on the photophysical properties of carbon nitride and its application for antibiotic degradation. Environ Sci Pollut Res 24(9):8609–8618

    CAS  Google Scholar 

  16. Gong Y, Li M, Li H et al (2015) Graphitic carbon nitride polymers: promising catalysts or catalyst supports for heterogeneous oxidation and hydrogenation. Green Chem 17(2):715–736

    CAS  Google Scholar 

  17. Wang X, Maeda K, Thomas A et al (2009) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 8(1):76–80

    CAS  PubMed  Google Scholar 

  18. Song B, Zeng Z, Zeng G et al (2019) Powerful combination of g-C3N4 and LDHs for enhanced photocatalytic performance: a review of strategy, synthesis, and applications. Adv Colloid Interface Sci 272:101999

    CAS  PubMed  Google Scholar 

  19. Liu Y, Wu YH, Pang HW et al (2019) Study on the removal of water pollutants by graphite phase carbon nitride materials. Progr Chem 31(06):831–846

    Google Scholar 

  20. Chen H, Yan T, Jiang F (2014) Adsorption of Cr(VI) from aqueous solution on mesoporous carbon nitride. J Taiwan Inst Chem Eng 45(4):1842–1849

    CAS  Google Scholar 

  21. Kafshgari LA, Ghorbani M, Azizi A (2017) Fabrication and investigation of MnFe2O4/MWCNTs nanocomposite by hydrothermal technique and adsorption of cationic and anionic dyes. Appl Surf Sci 419:70–83

    CAS  Google Scholar 

  22. Yao Y, Cai Y, Lu F et al (2014) Magnetic recoverable MnFe2O4 and MnFe2O4-graphene hybrid as heterogeneous catalysts of peroxymonosulfate activation for efficient degradation of aqueous organic pollutants. J Hazard Mater 270:61–70

    CAS  PubMed  Google Scholar 

  23. Chen YX, Li RC, Zhang YH, Chen XG, Ye Y (2017) Adsorption of methylene blue by halloysite/MnFe2O4 nanocomposites. J Nanosci Nanotechnol 17(9):6489–6496

    CAS  Google Scholar 

  24. Li N, Fu F, Lu J, Ding Z, Tang B, Pang J (2017) Facile preparation of magnetic mesoporous MnFe2O4@ SiO2-CTAB composites for Cr(VI) adsorption and reduction. Environ Pollut 220:1376–1385

    CAS  PubMed  Google Scholar 

  25. Podder MS, Majumder CB (2016) Studies on the removal of As(III) and As(V) through their adsorption onto granular activated carbon/MnFe2O4 composite: isotherm studies and error analysis. Compos Interfaces 23(4):327–372

    CAS  Google Scholar 

  26. Liu J, Chen Z, Yu K, LiuY GY, Xie S (2019) Polyaniline/oxidation etching graphitic carbon nitride composites for U(VI) removal from aqueous solutions. J Radioanal Nucl Chem 321(3):1005–1017

    CAS  Google Scholar 

  27. Liu H, Dai P, Zhang J et al (2013) Preparation and evaluation of activated carbons from lotus stalk with trimethyl phosphate and tributyl phosphate activation for lead removal. Chem Eng J 228:425–434

    CAS  Google Scholar 

  28. Liu X, Liu Y, Zhang W et al (2020) In situ self-assembly of 3D hierarchical 2D/2D CdS/g-C3N4 hereojunction with excellent photocatalytic performance. Mater Sci Semicond Process 105:104734

    CAS  Google Scholar 

  29. Vignesh K, Suganthi A, Min BK et al (2014) Photocatalytic activity of magnetically recoverable MnFe2O4/g-C3N4/TiO2 nanocomposite under simulated solar light irradiation. J Mol Catal A Chem 395:373–383

    CAS  Google Scholar 

  30. Ou B, Wang J, Wu Y et al (2020) Efficient removal of Cr(VI) by magnetic and recyclable calcined CoFe-LDH/g-C3N4 via the synergy of adsorption and photocatalysis under visible light. Chem Eng J 380:122600

    CAS  Google Scholar 

  31. Zhang S, Li J, Zeng M et al (2013) In situ synthesis of water-soluble magnetic graphitic carbon nitride photocatalyst and its synergistic catalytic performance. ACS Appl Mater Interfaces 5(23):12735–12743

    CAS  PubMed  Google Scholar 

  32. Gebreslassie G, Bharali P, Chandra U et al (2019) Novel g-C3N4/graphene/NiFe2O4 nanocomposites as magnetically separable visible light driven photocatalysts. J Photochem Photobiol A 382:111960

    CAS  Google Scholar 

  33. Palanivel B, Maiyalagan T, Jayarman V et al (2019) Rational design of ZnFe2O4/g-C3N4 nanocomposite for enhanced photo-Fenton reaction and supercapacitor performance. Appl Surf Sci 498:143807

    CAS  Google Scholar 

  34. Abdul Rahman AJ, Fiona HNF, Mohd Nasir MH et al (2019) S-quinolin-2-yl-methyldithiocarbazate-based magnetic adsorbent for magnetic solid-phase extraction of heavy metals from water samples. Int J Environ Anal Chem 1–18

  35. Jung C, Park J, Lim KH et al (2013) Adsorption of selected endocrine disrupting compounds and pharmaceuticals on activated biochar. J Hazard Mater 263:702–710

    CAS  PubMed  Google Scholar 

  36. Pang C, Liu Y, Cao X et al (2010) Adsorptive removal of uranium from aqueous solution using chitosan-coated attapulgite. J Radioanal Nucl Chem 286(1):185–193

    CAS  Google Scholar 

  37. Zhang X, Xue Y, Gao J et al (2020) Comparison of adsorption mechanisms for cadmium removal by modified zeolites and sands coated with Zn-layered double hydroxides. Chem Eng J 380:122578

    CAS  Google Scholar 

  38. Enniya I, Rghioui L, Jourani A (2018) Adsorption of hexavalent chromium in aqueous solution on activated carbon prepared from apple peels. Sustain Chem Pharm 7:9–16

    Google Scholar 

  39. Zhao G, Wen T, Yang X, Yang S, Liao J, Hu J, Shao D, Wang X (2012) Preconcentration of U(VI) ions on few-layered graphene oxide nanoshe from aqueous solutions. Dalton Trans 41(20):6182–6188

    CAS  PubMed  Google Scholar 

  40. Shehzad H, Zhou L, Li Z, Chen Q, Wang Y, Liu Z, Adesina AA (2018) Effective adsorption of U(VI) from aqueous solution using magnetic chitosan nanoparticles grafted with maleic anhydride: equilibrium, kinetic and thermodynamic studies. J Radioanal Nucl Chem 315(2):195–206

    CAS  Google Scholar 

  41. Jin J, Li S, Peng X, Liu W, Zhang C, Yang Y, Wang X (2018) HNO3 modified biochars for uranium(VI) removal from aqueous solution. Bioresour Technol 256:247–253

    CAS  PubMed  Google Scholar 

  42. Liu H, Xie S, Liao J, Yan T, Liu Y, Tang X (2018) Novel graphene oxide/bentonite composite for uranium(VI) adsorption from aqueous solution. J Radioanal Nucl Chem 317(3):1349–1360

    CAS  Google Scholar 

  43. Li M, Liu H, Chen T, Dong C, Sun Y (2019) Synthesis of magnetic biochar composites for enhanced uranium(VI) adsorption. Sci Total Environ 651:1020–1028

    CAS  PubMed  Google Scholar 

  44. Yu B, Ye G, Chen J, Ma S (2019) Membrane-supported 1D MOF hollow superstructure array prepared by polydopamine-regulated contra-diffusion synthesis for uranium entrapment. Environ Pollut 253:39–48

    CAS  PubMed  Google Scholar 

  45. Sun Y, Yang S, Sheng G et al (2011) Comparison of U(VI) removal from contaminated groundwater by nanoporous alumina and non-nanoporous alumina. Sep Purif Technol 83:196–203

    Google Scholar 

  46. Yu S, Wang J, Song S, Sun K, Li J, Wang X, Wang X (2017) One-pot synthesis of graphene oxide and Ni–Al layered double hydroxides nanocomposites for the efficient removal of U(VI) from wastewater. Sci China Chem 60(3):415–422

    Google Scholar 

  47. Liu X, Cheng C, Xiao C, Shao D, Xu Z, Wang J, Wang W (2017) Polyaniline (PANI) modified bentonite by plasma technique for U(VI) removal from aqueous solution. Appl Surf Sci 411:331–337

    CAS  Google Scholar 

  48. Yan T, Luo X, Zou Z et al (2017) Adsorption of uranium(VI) from a simulated saline solution by alkali-activated leather waste. Ind Eng Chem Res 56(12):3251–3258

    CAS  Google Scholar 

  49. Abdi S, Nasiri M, Mesbahi A et al (2017) Investigation of uranium(VI) adsorption by polypyrrole. J Hazard Mater 332:132–139

    CAS  PubMed  Google Scholar 

  50. Zhang Z, Nie W, Li Q et al (2013) Removal of uranium(VI) from aqueous solutions by carboxyl-rich hydrothermal carbon spheres through low-temperature heat treatment in air. J Radioanal Nucl Chem 298(1):361–368

    CAS  Google Scholar 

  51. Ren X, Wang S, Yang S et al (2009) Influence of contact time, pH, soil humic/fulvic acids, ionic strength and temperature on sorption of U(VI) onto MX-80 bentonite. J Radioanal Nucl Chem 283(1):253–259

    Google Scholar 

  52. Liu J, Zhao C, Tu H et al (2017) U(VI) adsorption onto cetyltrimethylammonium bromide modified bentonite in the presence of U(VI)-CO3 complexes. Appl Clay Sci 135:64–74

    CAS  Google Scholar 

  53. Liatsou I, Pashalidis I, Dosche C (2020) Cu(II) adsorption on 2-thiouracil-modified Luffa Cylindrica biochar fibres from artificial and real samples, and competition reactions with U(VI). J Hazard Mater 383:120950

    CAS  PubMed  Google Scholar 

  54. Azoulay A, Barrio J, Shalom M (2019) Modifying crystallinity morphology, and photophysical properties of carbon nitride by using crystals as reactants. Isr J Chem 59:1–7

    Google Scholar 

  55. Chaudhary M, Singh L, Rekha P et al (2019) Adsorption of uranium from aqueous solution as well as seawater conditions by nitrogen-enriched nanoporous polytriazine. Chem Eng J 378:122236

    CAS  Google Scholar 

  56. Li X, Xing J, Zhang C et al (2018) Adsorption of lead on sulfur-doped graphitic carbon nitride nanosheets: experimental and theoretical calculation study. ACS Sustain Chem Eng 6(8):10606–10615

    CAS  Google Scholar 

  57. Yao Y, Cai Y, Lu F et al (2014) Magnetic ZnFe2O4/g-C3N4 hybrid for photocatalytic degradation of aqueous organic pollutants by visible light. Ind Eng Chem Res 53(44):17294–17302

    CAS  Google Scholar 

  58. Hong D, Yamada Y, Nagatomi T et al (2012) Catalysis of nickel ferrite for photocatalytic water oxidation using [Ru (bpy) 3]2+ and S2O82−. J Am Chem Soc 134(48):19572–19575

    CAS  PubMed  Google Scholar 

  59. Fu Y, Xiong P, Chen H et al (2012) High photocatalytic activity of magnetically separable manganese ferrite–graphene heteroarchitectures. Ind Eng Chem Res 51(2):725–731

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China [Grant Numbers NO51904155].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinxiang Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, Y., He, Z., Wu, J. et al. Manganese ferrite/porous graphite carbon nitride composites for U(VI) adsorption from aqueous solutions. J Radioanal Nucl Chem 326, 157–171 (2020). https://doi.org/10.1007/s10967-020-07281-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07281-8

Keywords

Navigation