Skip to main content

Elemental characterisation of native lichens collected in an area affected by traditional charcoal production


This study provides a seasonal elemental characterisation of native lichens collected in rural areas of Portugal affected by charcoal kilns, using nuclear analytical techniques and electric conductivity. In autumn, it was possible to identify high levels of electric conductivity near the site with charcoal kilns due to higher oxidative stress of the lichens’ membrane. Typical chemical elements associated with emissions of wood burning, such as S and P, also presented the highest contents near the charcoal kilns. However, the same phenomenon was not found in spring. Residential areas presented the highest levels of S and P probably due to the impact of biomass burning from home heating that occurred during the winter period. Overall, lichens were found to be enriched with elements that can be attributable to non-crustal sources, namely, sea salt spray (Cl and Na), fertilisers used in agriculture (P and Ca) and wood burning (P and S).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Sparrevik M, Adam C, Martinsen V et al (2015) Emissions of gases and particles from charcoal/biochar production in rural areas using medium-sized traditional and improved “retort” kilns. Biomass Bioenergy 72:65–73.

    CAS  Article  Google Scholar 

  2. 2.

    Faé Gomes GM, Encarnação F (2012) The environmental impact on air quality and exposure to carbon monoxide from charcoal production in southern Brazil. Environ Res 116:136–139.

    CAS  Article  Google Scholar 

  3. 3.

    de Carvalho AB, Kato M, Rezende MM et al (2008) Determination of carbonyl compounds in the atmosphere of Charcoal plants by HPLC and UV detection. J Sep Sci 31:1686–1693.

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    de Carvalho AB, Kato M, Rezende MM et al (2013) Exposure to carbonyl compounds in charcoal production plants in Bahia, Brazil. Environ Sci Pollut Res 20:1565–1573.

    CAS  Article  Google Scholar 

  5. 5.

    FAOSTAT (2018) FAOSTAT. Accessed 16 Nov 2018

  6. 6.

    Canha N, Lage J, Galinha C et al (2018) Avaliação do impacte da produção tradicional de carvão na qualidade do ar através de biomonitorização. In: Livro de Actas “Uso Sustentável dos Ecossistemas e Proteção da Biodiversidade”—Conferência Internacional de Ambiente em Língua Portuguesa, XX Encontro REALP, XI CNA. Aveiro, Portugal, Portugal, pp 490–499

  7. 7.

    Brito JO (1990) Princípios de produção e utilização de carvão vegetal de madeira. In: Instituto de Pesquisas e Estudos Florestais (ed), São Paulo, p 14

  8. 8.

    Olujimi OO, Ana GREE, Ogunseye OO, Fabunmi VT (2016) Air quality index from charcoal production sites, carboxyheamoglobin and lung function among occupationally exposed charcoal workers in South Western Nigeria. Springerplus 5:1546.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Pereira EG, Martins MA, Pecenka R, Angélica de Cássia CO (2017) Pyrolysis gases burners: sustainability for integrated production of charcoal, heat and electricity. Renew Sustain Energy Rev 75:592–600.

    CAS  Article  Google Scholar 

  10. 10.

    Gerdol R, Marchesini R, Iacumin P, Brancaleoni L (2014) Monitoring temporal trends of air pollution in an urban area using mosses and lichens as biomonitors. Chemosphere 108:388–395.

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Protano C, Owczarek M, Antonucci A et al (2017) Assessing indoor air quality of school environments: transplanted lichen Pseudovernia furfuracea as a new tool for biomonitoring and bioaccumulation. Environ Monit Assess 189:358.

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Almeida SM, Lage J, Freitas MDC et al (2012) Integration of biomonitoring and instrumental techniques to assess the air quality in an industrial area located in the coastal of central Asturias, Spain. In: Journal of toxicology and environmental health—part A: current issues, Taylor & Francis Group, pp 1392–1403

  13. 13.

    Boonpeng C, Polyiam W, Sriviboon C et al (2017) Airborne trace elements near a petrochemical industrial complex in Thailand assessed by the lichen Parmotrema tinctorum (Despr. ex Nyl.) Hale. Environ Sci Pollut Res 24:12393–12404.

    CAS  Article  Google Scholar 

  14. 14.

    Vieira BJ, Freitas MC, Wolterbeek HT (2017) Vitality assessment of exposed lichens along different altitudes. Influence of weather conditions. Environ Sci Pollut Res 24:1–7.

    Article  Google Scholar 

  15. 15.

    Canha N, Almeida-Silva M, Freitas MC et al (2012) Lichens as biomonitors at indoor environments of primary schools. J Radioanal Nucl Chem 291(1):123–128

    CAS  Article  Google Scholar 

  16. 16.

    Godinho RM, Verburg TG, Freitas MC, Wolterbeek HT (2009) Accumulation of trace elements in the peripheral and central parts of two species of epiphytic lichens transplanted to a polluted site in Portugal. Environ Pollut 157:102–109.

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Lage J, Wolterbeek HT, Reis MA et al (2016) Source apportionment by positive matrix factorization on elemental concentration obtained in PM10 and biomonitors collected in the vicinities of a steelworks. J Radioanal Nucl Chem 309:397–404.

    CAS  Article  Google Scholar 

  18. 18.

    Fränzle O (2003) Chapter 2 bioindicators and environmental stress assessment. Trace Met other Contam Environ 6:41–84.

    Article  Google Scholar 

  19. 19.

    Markert BA, Breure AM, Zechmeister HG (2003) Chapter 1 definitions, strategies and principles for bioindication/biomonitoring of the environment. Trace Met other Contam Environ 6:3–39.

    CAS  Article  Google Scholar 

  20. 20.

    Cruz AMJ, Freitas M, do C, Canha N et al (2012) Spatial mapping of the city of Lisbon using biomonitors. Int J Environ Heal 6:1.

    CAS  Article  Google Scholar 

  21. 21.

    Machado A, Šlejkovec Z, Elteren JT et al (2006) Arsenic speciation in transplanted lichens and tree bark in the framework of a biomonitoring scenario. J Atmos Chem 53:237–249.

    CAS  Article  Google Scholar 

  22. 22.

    Leonardo L, Damatto SR, Gios BR, Mazzilli BP (2014) Lichen specie Canoparmelia texana as bioindicator of environmental impact from the phosphate fertilizer industry of São Paulo, Brazil. J Radioanal Nucl Chem 299:1935–1941.

    CAS  Article  Google Scholar 

  23. 23.

    Loppi S, Bonini I (2000) Lichens and mosses as biomonitors of trace elements in areas with thermal springs and fumarole activity (Mt. Amiata, central Italy). Chemosphere 41:1333–1336.

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Bubach D, Dufou L, Catán SP (2014) Evaluation of dispersal volcanic products of recent events in lichens in environmental gradient, Nahuel Huapi National Park, Argentina. Environ Monit Assess 186:4997–5007.

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Bermejo-Orduna R, McBride JR, Shiraishi K et al (2014) Biomonitoring of traffic-related nitrogen pollution using Letharia vulpina (L.) Hue in the Sierra Nevada, California. Sci Total Environ 490:205–212.

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Paatero J, Jaakkola T, Kulmala S (1998) Lichen (sp. Cladonia) as a deposition indicator for transuranium elements investigated with the Chernobyl fallout. J Environ Radioact 38:223–247.

    CAS  Article  Google Scholar 

  27. 27.

    Augusto S, Pereira MJ, Soares A, Branquinho C (2007) The contribution of environmental biomonitoring with lichens to assess human exposure to dioxins. Int J Hyg Environ Health 210:433–438.

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Canha N, Almeida SM, Freitas MC, Wolterbeek HT (2014) Indoor and outdoor biomonitoring using lichens at urban and rural primary schools. J Toxicol Environ Heal Part A Curr Issu 77:900–915.

    CAS  Article  Google Scholar 

  29. 29.

    Bozkurt Z (2017) Determination of airborne trace elements in an urban area using lichens as biomonitor. Environ Monit Assess 189:573.

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Gür F, Yaprak G (2011) Biomonitoring of metals in the vicinity of Soma coal-fired power plant in western Anatolia, Turkey using the epiphytic lichen, Xanthoria parietina. J Environ Sci Heal Part A Toxic Hazard Subst Environ Eng 46:1503–1511.

    CAS  Article  Google Scholar 

  31. 31.

    Revay Z (2015) PGAA: prompt gamma and in-beam neutron activation analysis facility. J Largescale Res Facil JLSRF 1:A20.

    Article  Google Scholar 

  32. 32.

    Révay Z, Kudejova P, Kleszcz K et al (2015) In-beam activation analysis facility at MLZ, garching. Nucl Instrum Methods A 799:114–123

    Article  Google Scholar 

  33. 33.

    Révay Z, Belgya T, Molnár GL (2005) Application of hypermet-PC in PGAA. J Radioanal Nucl Chem 265:261–265

    Article  Google Scholar 

  34. 34.

    Molnar GL, Révay Z, Belgya T (2002) Wide energy range efficiency calibration method for Ge detectors. Nucl Instrum Methods A 489:140–159

    CAS  Article  Google Scholar 

  35. 35.

    Révay Z (2009) Determining elemental composition using prompt gamma activation analysis. Anal Chem 81:6851–6859.

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Armishaw P, King B, Millar RG (2003) Achieving traceability in chemical measurement: a metrological approach to proficiency testing. In: Accreditation and quality assurance, pp 184–190

  37. 37.

    Canha N, Freitas MDC, Almeida SM (2019) Contribution of short irradiation instrumental neutron activation analysis to assess air pollution at indoor and outdoor environments using transplanted lichens. J Radioanal Nucl Chem 320:129–137.

    CAS  Article  Google Scholar 

  38. 38.

    Marques AP, Freitas MC, Wolterbeek HT et al (2005) Cell-membrane damage and element leaching in transplanted Parmelia sulcata lichen related to ambient SO2, temperature, and precipitation. Environ Sci Technol 39:2624–2630.

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Canha N, Freitas MC, Almeida-Silva M et al (2012) Burn wood influence on outdoor air quality in a small village: foros de Arrão, Portugal. J Radioanal Nucl Chem 291(1):83–88

    CAS  Article  Google Scholar 

  40. 40.

    Shi J, Wang N, Gao H et al (2019) Phosphorus solubility in aerosol particles related to particle sources and atmospheric acidification in Asian continental outflow. Atmos Chem Phys 19:847–860.

    CAS  Article  Google Scholar 

  41. 41.

    Calvo AI, Alves C, Castro A et al (2013) Research on aerosol sources and chemical composition: past, current and emerging issues. Atmos Res 120–121:1–28

    Article  Google Scholar 

  42. 42.

    Canha N, Freitas MC, Pacheco AMG (2013) Response of air-pollution biomonitors under three different meteorological conditions. J Radioanal Nucl Chem 295:489–496.

    CAS  Article  Google Scholar 

  43. 43.

    Justino AR, Canha N, Gamelas C et al (2019) Contribution of micro-PIXE to the characterization of settled dust events in an urban area affected by industrial activities. J Radioanal Nucl Chem 322:1953–1964.

    CAS  Article  Google Scholar 

  44. 44.

    Canha N, Dionisio I, Freitas MC et al (2011) Elemental characterization of superficial waters contaminated by an abandoned sulfide-mining area. Proc Radiochim Acta 1:377–381.

    Article  Google Scholar 

  45. 45.

    Mason B, Moore CB (1982) Principles of Geochemistry. Wiley, New York

    Google Scholar 

  46. 46.

    Dexter SC, Dalrymple RA, Kobayashi N (1988) The marine environment. In: Materials for marine systems and structures, Academic Press, Inc., pp 35–87

  47. 47.

    Lobert JM, Keene WC, Logan JA, Yevich R (1999) Global chlorine emissions from biomass burning: reactive chlorine emissions inventory. J Geophys Res Atmos 104:8373–8389.

    CAS  Article  Google Scholar 

  48. 48.

    Osyczka P, Boroń P, Lenart-Boroń A, Rola K (2018) Modifications in the structure of the lichen Cladonia thallus in the aftermath of habitat contamination and implications for its heavy-metal accumulation capacity. Environ Sci Pollut Res 25:1950–1961.

    CAS  Article  Google Scholar 

  49. 49.

    Canha N, Almeida SM, Freitas MDC et al (2014) Particulate matter analysis in indoor environments of urban and rural primary schools using passive sampling methodology. Atmos Environ 83:21–34.

    CAS  Article  Google Scholar 

  50. 50.

    Schlesinger WH, Klein EM, Vengosh A (2017) Global biogeochemical cycle of vanadium. Proc Natl Acad Sci USA 114:E11092–E11100.

    CAS  Article  PubMed  Google Scholar 

Download references


N. Canha acknowledges the funding by national funds through FCT—Fundação para a Ciência e a Tecnologia, I.P. (Portugal) for his Postdoc Grant (SFRH/BPD/102944/2014) and his contract ISD-ID (IST-ID/098/2018). The FCT support is also gratefully acknowledged by C2TN/IST (UIDB/04349/2020 + UIDP/04349/2020) and by CESAM (UIDB/50017/2020 + UIDP/50017/2020). This work is based on experiments performed at the PGAA (PromptGamma Activation Analysis) instrument at the Heinz Maier-Leibnitz Zentrum (MLZ), Garching, Germany.

Author information



Corresponding author

Correspondence to Nuno Canha.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Canha, N., Justino, A.R., Galinha, C. et al. Elemental characterisation of native lichens collected in an area affected by traditional charcoal production. J Radioanal Nucl Chem 325, 293–302 (2020).

Download citation


  • Charcoal production
  • Biomonitoring with lichens
  • Air pollutants
  • Prompt gamma activation analysis
  • Electric conductivity