Skip to main content
Log in

Preliminary evidence of prehistoric human activity by chemical analysis of sediments from Lapa Grande de Taquaraçu archaeological site using INAA

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

This paper analyzes the mass fractions of Ce, Co, Cr, Cs, Eu, Fe, Hf, K, La, Lu, Nd, Rb, Sc, Sm, Ta, Tb, Th, U, Yb and Zn determined from sixty sediment samples obtained from the Lapa Grande de Taquaraçu archaeological site using instrumental neutron activation analysis, INAA. The archaeological site is located in the municipality of Jaboticatubas, about 60 km from Belo Horizonte, Minas Gerais State, Brazil. The dataset was explored by means of cluster analysis, principal component analysis and discriminant analysis. The study showed three different compositional groups related to anthropogenic sediment, fluvial system and oxisols, respectively. The crystalline structure of each group were studied using X-ray diffraction, XRD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Konrad VA, Bonnichsen R, Clay V (1983) Soil chemical identification of ten thousand years of prehistoric human activity areas at the Munsungun Lake Throroughfare, Maine. J Archaeol Sci 10:13–28

    Article  Google Scholar 

  2. Cavanagh WG, Hirst S, Litton CD (1988) Soil phosphate, site boundaries, and change point analysis. J Field Archaeol 15:67–83

    Google Scholar 

  3. Arrhenius O (1929) Die phosphoatfrage. Z Pflanzenenernahrung Dungung Bodenkunde 10:185–194

    Article  Google Scholar 

  4. Craddock PT, Gurney D, Pryor F, Hughs M (1986) The application of phosphate analysis to the location and interpretation of archaeological sites. Archaeol J 142:361–376

    Article  Google Scholar 

  5. Holliday VT, Gartner WG (2007) Methods of soil P analysis in archaeology. J Archaeol Sci 34(2):301–333

    Article  Google Scholar 

  6. Wells EC, Terry RF, Parnell JJ, Hardin PJ, Jackson MW, Houston SD (2000) Chemical analyses of ancient anthrosols in residential areas at Piedras Negras, Guatemala. J Archaeol Sci 27:449–462

    Article  Google Scholar 

  7. Kämpf N, Woods WI, Sombroek W, Kern DC, Cunha TJ (2003) Classification of amazonian dark earth sand other ancient anthropic soils. In: Lehmann J et al (eds) Amazonian dark earths: origin, properties, management. Springer, Dordrecht, pp 77–102

    Google Scholar 

  8. Costa ADR, Silva Junior ML, Kern DC, Ruivo MDLP, Marichal R (2017) Forms of soil organic phosphorus at black earth sites in the Eastern Amazon. Rev Ciênc Agron 48(1):1–12

    Article  Google Scholar 

  9. Middleton WD (2004) Identifying chemical activity residues on prehistoric house floors: a methodology and rationale for multi-elemental characterization of a mild acid extract of anthropogenic sediments. Archaeometry 46(1):47–65

    Article  CAS  Google Scholar 

  10. Dardenne MA (1981). Os grupos Paranoá e Bambuí na faixa dobrada Brasiliana. Anais do Simpósio sobre o Cráton de São Francisco e suas Faixas Marginais, novembro 2–7, Salvador, Bahia, pp 140–157

  11. Alkmin FF, Martins AMN (2001) A bacia intracratônica do São Francisco. Arcabouço estrutural e cenários evolutivos. In Sociedade Brasileira de Geologia, Núcleo de Minas Gerais (Ed.), Bacia do São Francisco: Geologia e Recursos Naturais. Belo Horizonte, Minas Gerais, pp 9–30

  12. Flores RA, Sousa JCM, Araujo AGM, Ceccantini G (2016) Before Lagoa Santa: micro-remain and technological analysis in a lithic artifact from the Itaperica industry. J Lithic Stud 3(1):6–29

    Google Scholar 

  13. Piló LB (1998) Morfologia cárstica e materiais constituintes: dinâmica e evolução da depressão poligonal macacos-baú-carste de Lagoa Santa, MG. Doctoral dissertation, FFLCH—University of São Paulo

  14. Danzeglocke U, Jöris O, Weninger B (2007) CalPal online (Version 1.5). University of Cologne, Germany. http://www.calpal-online.de. Accessed date August 2015

  15. Teixeira W, Toledo MC, Fairchild TR, Taioli F (2008) Decifrando a Terra. Companhia Nacional (Ed.), 2nd ed. São Paulo

  16. Araujo AG, Feathers JK, Arroyo-Kalin M, Tizuka MM (2008) Lapa das boleiras rock shelter: stratigraphy and formation processes at a paleoamerican site in Central Brazil. J Archaeol Sci 35(12):3186–3202

    Article  Google Scholar 

  17. Araujo GM, Neves WA, Kipnis R (2012) Lagoa Santa Revisited: an overview of the chronology, subsistence, and material culture of paleoindian sites in eastern central Brazil. Lat Am Antiq 23:533–550

    Article  Google Scholar 

  18. Araujo AGM, Piló LB (2017) Towards the development of a tropical geoarchaeology: Lagoa Santa as an emblematic case study. In: Da-Gloria P et al (eds) Archaeological and paleontological research in Lagoa Santa. Springer, Berlin, pp 373–391

    Chapter  Google Scholar 

  19. Silva LV, Prous AP (2014) O papel dos resíduos de combustão na formação dos estratos sedimentares na Lapa do Niactor: o elemento antrópico como agente dominante na sedimentação em abrigos. Arq Museu Hist Nat UFMG Belo Horiz 23(2):105–139

    Google Scholar 

  20. Stein JK, Kornbacher KD, Tyler JL (1992) British camp shell midden stratigraphy. In: Stein JK (ed) Deciphering a shell midden. Academic Press, Cambridge, pp 95–134

    Google Scholar 

  21. Hazenfratz R, Munita CS, Neves EG (2018) Neural networks (SOM) applied to INAA data of chemical elements in archaeological ceramics from central Amazon. Sci Technol Archaeol Res 3(2):334–340

    Google Scholar 

  22. Rorabacher DB (1991) Statistical treatment for rejection of deviant values: critical values of Dixon’s “Q” parameter and related subrange ratios at the 95% confidence level. Anal Chem 63:139–146

    Article  CAS  Google Scholar 

  23. Kuleff I, Djingova R (1990) Activation analysis in archaeology. In: Alfassi ZB (ed) Activation analysis, vol II. CRC Press, Boca Raton, pp 428–477

    Google Scholar 

  24. Glascock MD (1992) Characterization of ceramics at MURR by NAA and multivariate statistics. In: Neff H (ed) Chemical characterization of ceramics paste in archaeology, monographs in world archaeology. Prehistory Press, New York, pp 11–26

    Google Scholar 

  25. Bishop RL, Canouts V, Crown PL, Atley SP (1990) Sensitivity, precision and accuracy: their roles in ceramic compositional data bases. Am Antiq 55(2):537–546

    Article  Google Scholar 

  26. Arenhs LH (1954) The lognormal distribution of the elements. Geochim Cosmochim Acta 5(2):49–73

    Article  Google Scholar 

  27. Baxter MJ, Freestone IC (2006) Log-ratio compositional data analysis in archaeometry. Archaeometry 48(3):511–531

    Article  Google Scholar 

  28. Grubbs FE (1950) Sample criteria for testing outlying observations. Ann Math Stat 20:27–58

    Article  Google Scholar 

  29. Penny KI (1996) Appropriate critical values when testing for a single multivariate outlier by using the Mahalanobis distance. J R Stat Soc C 45(1):73–81

    Google Scholar 

  30. Oliveira PMS, Munita CS (2003) Influência do valor critico na detecção de valores discrepantes em arqueometria. In Anais da 48° Reunião Anual da Região Brasileira da Sociedade Internacional de Biometria, Lavras, MG, Brasil, 07 a 11 de Julho

  31. Joossens K, Croux C (2004) Empirical comparison of the classification performance of robust linear and quadratic analysis. In: Huber M, Pison G, Struyf A, Van Aelst S (eds) Theory and application of recent robust methods. Verlag Basel, Birkhauser, pp 131–140

    Chapter  Google Scholar 

  32. Sayre EV, Dodson RW (1975) Brookhaven procedures for statistical analyses of multivariate archaeometric data. Brookhaven National Laboratory Report BNL-23128, New York

  33. Glascock MD, Neff H (2003) Neutron activation analysis and provenance research in archaeology. Meas Sci Technol 14:1516–1526

    Article  CAS  Google Scholar 

  34. MacDonald BL, Hancock RGV, Cannon A, Pidruczny A (2011) Geochemical characterization of ochre from central coastal British Columbia, Canada. J Arhcaeol Sci 38:3620–3630

    Google Scholar 

  35. Hair JF Jr, Anderson RE, Tatham RL, Black WC (2005) Análise multivariada de dados, 5a edn. Bookman, Porto Alegre, p 593

    Google Scholar 

  36. Krzanowski WJ (1987) Selection of variables to preserve multivariate data structure, using principal components. Appl Stat 36(1):22–33

    Article  Google Scholar 

  37. Krzanowski WJ (1996) A stopping rule for structure-preserving variable selection. Stat Comput 6:51–56

    Article  Google Scholar 

  38. Munita CS, Barroso P, Oliveira PMS (2013) Variable selection study using procrustes analysis. Open J Archaeom 1:31–35

    Article  Google Scholar 

  39. Canti MG (2003) Aspects of the chemical and microscopic characteristics of plant ashes found in archaeological soils. CATENA 54(3):339–361

    Article  CAS  Google Scholar 

  40. Villagran XS, Strauss A, Miller C, Ligouis B, Oliveira R (2017) Buried in ashes: site formation processes at Lapa do Santo rockshelter, east-central Brazil. J Archaeol Sci 77:10–34

    Article  CAS  Google Scholar 

  41. Middleton WD, Price TD (1996) Identification of activity areas by multi-element characterization of sediments from modern and archaeological house floors using inductively coupled plasma-atomic emission spectroscopy. J Archaeol Sci 23:673–687

    Article  Google Scholar 

  42. Entwistle JA (2000) The geoarchaeological significance and spatial variability of a range of physical and chemical soil properties from a former habitation site, Isle of Skye. J Archaeol Sci 27:287–303

    Article  Google Scholar 

  43. King SM (2008) The spatial organization of food sharing in early postclassic households: an application of soil chemistry in ancient Oxaca, Mexico. J Archaeol Sci 35:1224–1239

    Article  Google Scholar 

  44. Barba LA (1996) La química en el estudio de áreas de actividad. In: Manzanilla Linda (ed) Análisis de unidades habitacionales mesoamericanas y sus Áreas de actividad. DF, México, pp 21–39

    Google Scholar 

  45. Barba LA (2007) Chemical residues in lime-plastered archaeological floors. Geoarchaeology 22(4):439–452

    Article  Google Scholar 

  46. Barba LA (1990) El análisis químico de pisos de unidades habitacionales para determinar sus áreas de actividad. In: Sigiura Y, Serra MC (eds) Etnoarqueología: coloquio Bosch-Gimpera. México, DF, pp 177–200

    Google Scholar 

  47. Barba LA, Ortiz A, Link KF, López Lujan L, Lazos L (1996) The chemical analysis of residues in floors and the reconstruction of ritual activities at the Templo Mayor, México. In Orna MV (ed.) Archaeological chemistry: organic, inorganic and biochemical analysis. ACS symposium series, vol 625, pp 139–156

  48. Vyncke K, Degryse P, Vassilieva E, Waelkens M (2011) Identifying domestic functional areas. Chemical analysis of floor sediments at the classical-Hellenistic settlement at Düzen Tepe (SW Turkey). J Archaeol Sci 38:2274–2292

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Casimiro S. Munita.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tudela, D.R.G., Araujo, A.G.M., Tatumi, S.H. et al. Preliminary evidence of prehistoric human activity by chemical analysis of sediments from Lapa Grande de Taquaraçu archaeological site using INAA. J Radioanal Nucl Chem 325, 725–736 (2020). https://doi.org/10.1007/s10967-020-07217-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07217-2

Keywords

Navigation