Skip to main content
Log in

New measurements of gamma-ray energies and their absolute intensities from the decay of 231Pa

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Accurate nuclear data for the decay of 231Pa is highly important for non-destructive analysis in the areas of radiochronometry and nuclear forensics. However, the evaluated nuclear data for this isotope is lacking; many previous measurements have large uncertainties and only two measurements are used to determine the absolute intensities. This work presents modern measurements of the major gamma-ray emissions from the decay of 231Pa to 227Ac including the energies and absolute intensities. For many of these measurements, the error envelopes have been significantly decreased compared to previous measurements, while remaining in good agreement. The absolute intensity of the 283 keV reference line was measured as 0.0163(2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lund/LBNL Nuclear Data Search “Table of Radioactive Isotopes” (1999) Lawrence Berkeley National Laboratory. http://nucleardata.nuclear.lu.se/toi/index.asp. Accessed 17 July 2018

  2. Pietruszewski A, Zarnowiecki K, Smagala G (1986) Microcomputer controlled system for spectrometric determination of U-enrichment with planar/coaxial detectors, using 234Th/235U and 234Pam/235U photopeak ratios. In: Nuclear Safeguards Technology 1986: proceedings of a symposium, Vienna

  3. Sullivan J, Rawool-Sullivan M, Wenz T (2008) LaCl3(Ce) and LaBr 3(Ce) gamma-ray-ray spectra with various plutonium isotopic and uranium enrichment standards. J Radioanal Nucl Chem 276(3):699–705

    Article  CAS  Google Scholar 

  4. Prabhu S, Sawant P, Bhati S (2010) Standardization of radiochemical procedure for the estimation of protactinium in bioassay samples. Radiat Prot Environ 33(3):137–139

    Google Scholar 

  5. Eppich G, Williams R, Gaffney A, Schorzman K (2013) 235U–231Pa age dating of uranium materials for nuclear forensic investigations. J Anal At Spectrom 28:666–674

    Article  CAS  Google Scholar 

  6. Knight A, Eitrheim E, Nelson A, Nelson S, Schultz M (2014) A simple-rapid method to separate uranium, thorium, and protactinium for U-series age-dating of materials. J Environ Radioact 134:66–74

    Article  CAS  Google Scholar 

  7. Rekha A, Dingankar M, Anilkumar S, Narayani K (2006) Determination of the activity ratios of 231Pa to 235U and 227Th to 235U in ore samples using gamma-ray-spectrometry. J Radioanal Nucl Chem 268(3):453–460

    Article  CAS  Google Scholar 

  8. Rolison J, Williams R (2018) Application of the 226Ra–230Th–234U and 227Ac–231Pa–235U radiochronometers to UF6 cylinders. J Radioanal Nucl Chem 317(2):897–905

    Article  CAS  Google Scholar 

  9. Roliso J, Treinen K, McHugh K, Gaffney A, Williams R (2017) Application of the 226Ra–230Th–234U and 227Ac–231Pa–235U radiochronometers to uranium certified reference materials. J Radioanal Nucl Chem 314(3):2459–2467

    Article  Google Scholar 

  10. Berzero A, Caramella-Crespi V, Cavagna P (1997) Direct gamma-ray spectroscopy dating of fossil bones: preliminary results. Archaeometry 39(1):189–203

    Article  Google Scholar 

  11. Burnett W, Baker K, Chin P, McCabe W, Ditchburn R (1988) Uranium-series and AMS 14C studies of modern phosphatic pellets from Peru shelf muds. Mar Geol 80:215–230

    Article  CAS  Google Scholar 

  12. Edwards R, Cheng H, Murrell M, Goldstein S (1997) Protactinium-231 dating of carbonates by thermal ionization mass spectrometry: implications for quaternary climate change. Science 276(5313):782–786

    Article  CAS  Google Scholar 

  13. Wakita H, Nagasawa H, Uyeda S, Kuno H (1967) Uranium, thorium and potassium contents of possible mantle materials. Geochem J 1:183–198

    Article  CAS  Google Scholar 

  14. Edwards R, Gallup C, Cheng H (2003) Uranium-series dating of marine and lacustrine carbonates. Rev Mineral Geochem 52(1):363–405

    Article  CAS  Google Scholar 

  15. Raje N, Swain K, Kumar S, Kayasth S, Parthasarathy R, Mathur P (2001) Preconcentration of natural protactinium (231Pa) from monazite on Dowex 1X8 and subsequent determination by gamma-ray-spectrometry. J Radioanal Nucl Chem 247(1):115–120

    Article  CAS  Google Scholar 

  16. National Nuclear Data Center “NNDC”(2013) Brookhaven National Laboratory, [Online]. Available: http://www.nndc.bnl.gov/. Accessed 23 Feb 2020

  17. ENSDF Nuclear Data Sheets “227Ac” (2016) NDS 132:257

  18. Banham M, McCrohon R (1986) The measurement of gamma-ray emission probabilities for the nuclides 231Pa, 233Pa, 232U, 235U, 237U, and 237Np. US Department of Energy, Washington

    Google Scholar 

  19. de Pinho A, da Silveira E, da Costa N (1970) High-resolution Gamma-ray spectroscopy in the decay of Pa-231. Phys Rev C 2:572

    Article  Google Scholar 

  20. Guseva L, Tikhomirova G (1993) Ion-exchange behavior and separation of actinides in various oxidation states on cation-exchangers in dilute HF. Radiokhimiya 35(2):103–110

    CAS  Google Scholar 

  21. Gunnink R and Niday J (1972) Computerized quantitative analysis of gamma-ray spectrometry. UCRL-51061, 5 volumes, Livermore National Laboratory, Livermore

  22. Leang C (1970) Etude des Rayonnements Gamma-ray Accompagnant la Desintegration Alpha du Protactinium-231 (231Pa → 227Ac). J Phys Fr 31(4):269

    Article  CAS  Google Scholar 

  23. Teoh W, Connor R, Betts R (1979) The decay of 231Pa. Nucl Phys A 319(1–2):122–142

    Article  Google Scholar 

  24. Lange R, Hagee G (1969) Levels, transitions and rotational structure in 227Ac. Nucl Phys A 124(2):412–428

    Article  CAS  Google Scholar 

  25. Borner H, Barreau G, Davidson W, Jeuch P, von Egidy T, Almeida J, White D (1979) High precision measurements of some Gamma-ray transitions in 227Ac, 228Th, 231Pa, 232U, 233Pa, 239Np, 239Pu and 245Am. Nucl Instrum Methods 166(2):251–255

    Article  Google Scholar 

  26. Anicin I, Bikit I, Girit C, Guven H, Hamilton WD, Yousif AA (1982) Levels and transitions in 227Ac. J Phys G Nucl Phys 8(3):369

    Article  CAS  Google Scholar 

  27. de Pinho A, Auler L, da Silva A (1974) X rays following the alpha decay of 231Pa. Phys Rev C 9:2056

    Article  Google Scholar 

Download references

Acknowledgements

This study was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This material is based upon work supported by the Department of Energy National Nuclear Security Administration through the Nuclear Science and Security Consortium under Award No. DE-NA0003180. The authors would like to thank Keenan Thomas and the Nuclear Counting Facility at Lawrence Livermore National Laboratory for preforming gamma-ray spectrometry as well as Ken Moody for assisting with the error analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelly N. Kmak.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kmak, K.N., Shaughnessy, D.A. & Vujic, J. New measurements of gamma-ray energies and their absolute intensities from the decay of 231Pa. J Radioanal Nucl Chem 325, 223–228 (2020). https://doi.org/10.1007/s10967-020-07209-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07209-2

Keywords

Navigation