Skip to main content
Log in

Radiochemical separation of no-carrier-added 186Re from proton irradiated tungsten target

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Rhenium-186 [t½ = 3.7 d, 1.07 MeV β-particles, 137 keV γ-ray] is an emerging radioisotope which holds tremendous potential in preparation of theranostic radiopharmaceuticals. This radioisotope was produced in a no-carrier-added form by irradiation of enriched 186W target via 186W(p, n) 186Re reaction in a pelletron. A facile radiochemical separation procedure based on selective solvent extraction in methylethyl ketone medium followed by column chromatography using mesoporous alumina sorbent has been developed to obtain 186Re in a form suitable for radiopharmaceutical preparation. This approach is expected to promote widespread utilization of this radioisotope for the benefit of cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Boros E, Packard AB (2019) Radioactive transition metals for imaging and therapy. Chem Rev 119(2):870–901

    Article  CAS  PubMed  Google Scholar 

  2. Cutler CS, Hennkens HM, Sisay N, Huclier-Markai S, Jurisson SS (2013) Radiometals for combined imaging and therapy. Chem Rev 113(2):858–883

    Article  CAS  PubMed  Google Scholar 

  3. Knapp FF, Mirzadeh S, Beets AL (1996) Reactor production and processing of therapeutic radioisotopes for applications in nuclear medicine. J Radioanal Nucl Chem 205(1):93–100

    Article  CAS  Google Scholar 

  4. Ali SKI, Khandaker MU, Kassim HA (2018) Evaluation of production cross-sections for 186Re theranostic radionuclide via charged-particle induced reactions on Tungsten. Appl Radiat Isot 135:239–250

    Article  CAS  PubMed  Google Scholar 

  5. Zhang X, Li W, Fang K, He W, Sheng R, Ying D, Hu W (1999) Excitation functions for natW(p, xn)181–186Re reactions and production of no-carrier-added 186Re via 186W(p, n) 186Re reaction. Radiochim Acta 86:11–16

    Article  CAS  Google Scholar 

  6. Shigeta N, Matsuoka H, Osa A, Koizumi M, Izumo M, Kobayashi K, Hashimoto K, Sekine T, Lambrecht RM (1996) Production method of no-carrier-added 186Re. J Radioanal Nucl Chem 205(1):85–92

    Article  CAS  Google Scholar 

  7. Khandaker MU, Nagatsu K, Minegishi K, Wakui T, Zhang M-R, Otuka N (2017) Study of deuteron-induced nuclear reactions on natural tungsten for the production of theranostic 186Re via AVF cyclotron up to 38 MeV. Nucl Instrum Methods Phys Res B 403:51–68

    Article  CAS  Google Scholar 

  8. Lapi S, Mills WJ, Wilson J, McQuarrie S, Publicover J, Schueller M, Schyler D, Ressler JJ, Ruth TJ (2007) Production cross-sections of 181–186Re isotopes from proton bombardment of natural tungsten. Appl Radiat Isot 65(3):345–349

    Article  CAS  PubMed  Google Scholar 

  9. Mastren T, Radchenko V, Bach HT, Balkin ER, Birnbaum ER, Brugh M, Engle JW, Gott MD, Guthrie J, Hennkens HM, John KD, Ketring AR, Kuchuk M, Maassen JR, Naranjo CM, Nortier FM, Phelps TE, Jurisson SS, Wilbur DS, Fassbender ME (2017) Bulk production and evaluation of high specific activity 186gRe for cancer therapy using enriched 186WO3 targets in a proton beam. Nucl Med Biol 49:24–29

    Article  CAS  PubMed  Google Scholar 

  10. Moustapha ME, Ehrhardt GJ, Smith CJ, Szajek LP, Eckelman WC, Jurisson SS (2006) Preparation of cyclotron-produced 186Re and comparison with reactor-produced 186Re and generator-produced 188Re for the labeling of bombesin. Nucl Med Biol 33(1):81–89

    Article  CAS  PubMed  Google Scholar 

  11. Maiti M (2011) Probable nuclear reactions to produce proton rich rhenium radionuclides. J Radioanal Nucl Chem 290:11–16

    Article  CAS  Google Scholar 

  12. Dash A, Knapp FF Jr (2015) An overview of radioisotope separation technologies for development of 188W/188Re radionuclide generators providing 188Re to meet future research and clinical demands. RSC Adv 5(49):39012–39036

    Article  CAS  Google Scholar 

  13. Balkin ER, Gagnon K, Strong KT, Smith BE, Dorman EF, Emery RC, Pauzauskie PJ, Fassbender ME, Cutler CS, Ketring AR, Jurisson SS, Wilbur DS (2016) Deuteron irradiation of W and WO3 for production of high specific activity 186Re: challenges associated with thick target preparation. Appl Radiat Isot 115:197–207

    Article  CAS  PubMed  Google Scholar 

  14. Choudhury D, Naskar N, Lahiri S (2018) Production and separation of no-carrier-added 181–184Re radioisotopes from proton irradiated tungsten target. Radiochim Acta 106(9):743–749

    Article  CAS  Google Scholar 

  15. Novgorodov AF, Bruchertseifer F, Brockmann J, Lebedev NA, Rosch F (2000) Thermochromatographic separation of no-carrier-added 186Re or 188Re from tungsten targets relevant to nuclear medical applications. Radiochim Acta 88:163–167

    Article  CAS  Google Scholar 

  16. Chakravarty R, Chakraborty S, Jadhav S, Jagadeesan KC, Thakare SV, Dash A (2019) A facile method for electrochemical separation of 181–186Re from proton irradiated natural tungsten oxide target. Appl Radiat Isot 154:108885

    Article  CAS  PubMed  Google Scholar 

  17. Chakravarty R, Bahadur J, Lohar S, Sarma HD, Sen D, Mishra R, Chakraborty S, Dash A (2019) Solid state synthesis of mesoporous alumina: a viable strategy for preparation of an advanced nanosorbent for 99Mo/99mTc generator technology. Microporous Mesoporous Mater 287:271–279

    Article  CAS  Google Scholar 

  18. Chu SYF, Ekstrom LP, Firestone RB (1999) The Lund/LBNL Nuclear Data Search Version 20, February 1999. http://nucleardata.nuclear.lu.se/toi/. Accessed 1 Apr 2020.

  19. Chakravarty R, Dash A, Kothari K, Pillai MRA, Venkatesh M (2009) A novel 188W/188Re electrochemical generator with potential for medical applications. Radiochim Acta 97:309–317

    Article  CAS  Google Scholar 

  20. Mushtaq A, Bukhari Tanveer H, Khan Islam U (2007) Extraction of medically interesting 188Re-perrhenate in methyl ethyl ketone for concentration purposes. Radiochim Acta 95:535–537

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Dr. P.K. Pujari, Director, Radiochemistry and Isotope Group, Bhabha Atomic Research Centre for his encouragement and support. Thanks are due to Dr. K. P. Muthe and Dr. Ajay Singh of Technical Physics Division, Bhabha Atomic Research Centre for preparation of the target. Analytical Chemistry Division, Bhabha Atomic Research Centre is gratefully acknowledged for ICP-AES analyses of samples. All staff members of BARC-TIFR pelletron facility are gratefully acknowledged for their support during the irradiation process.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rubel Chakravarty.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ram, R., Chakravarty, R., Jadhav, S. et al. Radiochemical separation of no-carrier-added 186Re from proton irradiated tungsten target. J Radioanal Nucl Chem 325, 875–883 (2020). https://doi.org/10.1007/s10967-020-07207-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07207-4

Keywords

Navigation