Skip to main content
Log in

Measurement of cesium isotopic ratio by thermal ionization mass spectrometry for neutron capture reaction studies on 135Cs

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The measurements of Cs isotopic ratios by TIMS were performed for the sample analysis used to evaluation of the nuclear data of 135Cs. To obtain a high intensity and stable ion beam, the effects of additive agents on the ionization of Cs were examined. The effect of silicotungstic acid on the ionization of Cs was the largest among the additive agents discussed in this study, while this also showed the largest isobaric interference of polyatomic ions. After examining of the analytical conditions, such as the interference effect due to Ba, the sample analysis of two radioactive Cs samples were conducted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. https://www.jst.go.jp/impact/hp_fjt/en/. Accessed 19 Sep 2019

  2. Firestone RB, Shirley VS, Baglin CM, Chu SYF, Zipkin J (1995) Table of isotopes, 8th edn. Wiley, New York

    Google Scholar 

  3. http://www.nucleide.org/Laraweb/index.php. Accessed 19 Sep 2019

  4. Nakamura S, Shibahara Y, Kimura A, Iwamoto O, Uehara A, Fujii T (2020) Activation measurement of thermal-neutron capture cross-section of caesium-135 by applying mass spectrometry. J Nucl Sci Technol. https://doi.org/10.1080/00223131.2019.1691077

    Article  Google Scholar 

  5. Sugarman N (1949) Characteristics of the fission products 135Cs. Phys Rev 75(10):1473–1476

    Article  CAS  Google Scholar 

  6. Baerg AP, Brown F, Lounbury M (1958) The cross section for the reaction Cs135(n, γ)Cs136. Can J Phys 36:863–870

    Article  CAS  Google Scholar 

  7. Katoh T, Nakamura S, Harada H (1997) Measurement of thermal neutron capture cross section and resonance integral of the reaction 135Cs(n, γ)136Cs. J Nucl Sci Technol 34(5):431–438

    Article  CAS  Google Scholar 

  8. Jaag S, Kappeler F, Koehler P (1997) The stellar (n γ) cross section of the unstable 135Cs. Nucl Phys A 621:247–250

    Article  Google Scholar 

  9. Patronis N, Dababneh S, Assimakopoulos PA, Gallino R, Heil M, Kappeler F, Karamanis D, Koehler PE, Mengoni A, Plag R (2004) Neutron capture studies on unstable 135Cs for nucleosynthesis and transmutation. Phys Rev C 69:025803

    Article  Google Scholar 

  10. Anufriev VA, Babich SI (1987) Measurement of total neutron cross section of 134Cs and 135Cs radionuclides. At Energy 63(5):346–347

    Article  CAS  Google Scholar 

  11. Harada H, Nakamura S, Katoh T (1997) Development of conventional quadrupole mass analyzer for RI target analysis and its performance. J Nucl Sci Technol 34(5):498–502

    Article  CAS  Google Scholar 

  12. Ohno T, Muramatsu Y (2014) Determination of radioactive cesium isotope ratios by triple quadrupole ICP-MS and its application to rainwater following the Fukushima Daiichi Nuclear Power Plant Accident. J Anal At Spectrom 29:347–351

    Article  CAS  Google Scholar 

  13. Zheng J, Bu W, Tagami K, Shikamori Y, Nakano K, Uchida S, Ishii N (2014) Determination of 135Cs and 135Cs/137Cs atomic ratio in environmental sample by combining ammonium molybdophosphate (AMP)-selective Cs adsorption and ion-exchange chromatographic separation to triple-quadrupole inductively coupled plasma-mass spectrometry. Anal Chem 86:7103–7110

    Article  CAS  Google Scholar 

  14. Zheng J, Cao L, Tagami K, Uchida S (2016) Triple-quadrupole inductively coupled plasma-mass spectrometry with a high0efficiency sample introduction system for ultratrace determination of 135Cs and 137Cs in environmental samples at femtogram levels. Anal Chem 88:8772–8779

    Article  CAS  Google Scholar 

  15. Supporting Information of Ref. [14]. https://doi.org/10.1021/acs.analchem.6b02150

  16. Robert C (1989-90) Handbook of chemistry and physics, 70th edn. CRC press Inc., Boca Raton, FL

  17. Platzner IT (1997) Modern isotope ratio mass spectrometry. Willey, Chichester

    Google Scholar 

  18. Lee T, Ku TL, Lu HL, Chen JC (1993) First detection of fallout Cs-135 and potential applications of 137Cs/135Cs ratios. Geochim Cosmochim Acta 57:3493

    Article  CAS  Google Scholar 

  19. Chen HW, Lee T, Ku TL, Das JP (2008) Production ratio of nuclear fallout 137Cs/135Cs. Chin J Phys 46(5):560–569

    CAS  Google Scholar 

  20. Shibahara Y, Kubota T, Fujii T, Fukutani S, Ohta T, Takamiya K, Okumura R, Mizuno S, Yamana H (2014) Analysis of cesium isotope compositions in environmental samples by thermal ionization mass spectrometry -1: a preliminary study for source analysis of radioactive contamination in Fukushima prefecture. J Nucl Sci Technol 51(4):575–579

    Article  CAS  Google Scholar 

  21. Shibahara Y, Kubota T, Fukutani S, Fujii T, Takamiya K, Ohta T, Shibata T, Yoshikawa M, Konno M, Mizuno S, Yamana H (2016) Application of mass spectrometry for analysis of cesium and strontium in environmental samples obtained in Fukushima Prefecture. Radiological Issues for Fukushima’s Revitalized Future. Springer Japan

  22. Shibahara Y, Kubota T, Fujii T, Fukutani S, Takamiya K, Konno M, Mizuno S, Yamana H (2017) Analysis of cesium isotope compositions in environmental samples by thermal ionization mass spectrometry-3: measurement of isotopic ratios of cs in soil samples obtained in Fukushima prefecture. J Nucl Sci Technol 54(2):158–166

    Article  CAS  Google Scholar 

  23. Dunne JA, Richards DA, Chen HW (2017) Procedures for precise measurements of 135Cs/137Cs atom ratios I environmental samples at extreme dynamic ranges and ultra-trace levels by thermal ionization mass spectrometry. Talanta 174:347–356

    Article  CAS  Google Scholar 

  24. Bu W, Tang L, Liu X, Wang Z, Fukuda M, Zheng J, Aono T, Hu S, Wang X (2019) Ultra-trace determination of the 135Cs/137Cs isotopic ratio by thermal ionization mass spectrometry with application to Fukushima marine sediment samples. J Anal Atom Spectrom 34:301–309

    Article  CAS  Google Scholar 

  25. Birck JL (1986) Precision K-Rb-Sr isotopic analysis: application to Rb-Sr chronology. Chem Geol 56:73–83

    Article  CAS  Google Scholar 

  26. Li CF, Chu ZY, Wang XC, Guo JU, Wilde SA (2019) Sr isotope analysis of picogram-level samples by thermal ionization mass spectrometry using a highly sensitive silicotungstic acid emitter. Anal Chem 91:7288–9294

    Article  CAS  Google Scholar 

  27. In progress

  28. JSAC-0764, JSAC-0765, JSAC-0766. Certified Reference Materials. Japan Society for Analytial Chemistry. http://www.jsac.or.jp/srm/CRMJSAC0764.pdf. Accessed 19 Sep 2019

  29. Dresser M (1968) The Saha-Langmuir equation and its application. J Appl Phys 39:338–339

    Article  CAS  Google Scholar 

  30. Cameron AE, Smith DH, Walker RL (1969) Mass spectrometry of nanogram-size samples of lead. Anal Chem 41:525–526

    Article  CAS  Google Scholar 

  31. Rokop DJ, Perin RE, Knobeloch GW, Armijo VM, Shields WR (1982) Thermal ionization mass spectrometry of uranium with electrodeposition as a loading technique. Anal Chem 54:957–960

    Article  CAS  Google Scholar 

  32. Shibahara Y, Kubota T, Fujii T, Fukutani S, Takamiya K, Konno M, Mizuno S, Yamana H (2017) Determination of isotopic ratios of plutonium and uranium in soil samples by thermal ionization mass spectrometry. J Radioanal Nucl Chem 307:2281–2287

    Article  Google Scholar 

  33. Inglis JD, Maassen J, Kara A, Steiner RE, Kinman WS, Lopez D (2017) A multiple ion counter total evaporation (MICTE) method for precise analysis of plutonium by thermal ioniozation mass spectrometry. J Radaioanal Nucl Chem 312:663–673

    Article  CAS  Google Scholar 

  34. Huett T, Ingram JC, Delmore JE (1995) Ion-emitting molten glasses: silica gel revisited. Int J Mass Spectrom Ion Process 146(147):5–14

    Article  Google Scholar 

  35. Shibahara Y, Uehara A, Fujii T, Nakamura S, Kimura A, Hales B, Iwamoto O (2018) Analysis of 135Cs/137Cs isotopic ratio for samples used for neutron capture corss section measurement project by thermal ionization mass spectrometry. JAEA-conf2018-001. https://doi.org/10.11484/jaea-conf-2018-001

  36. Dion MP, Springer KWF, Sumner RI, Thomas MLP, Eiden GC (2020) Analytical determination of radioactive strontium and cesium by thermal ionization mass spectrometry. Int J Mass Spectrom. https://doi.org/10.1016/j.ijms.2019.116273

    Article  Google Scholar 

  37. Snow MS, Snyder DC, Delmore JE (2016) Fukushima Daiichi reactor source term attribution using cesium isotope ratios from contaminated environmental samples. Rapid Commun Mass Spectrom 30:523–532

    Article  CAS  Google Scholar 

  38. JSAC-0761, JSAC-0762, JSAC-0763. Certified Reference Materials. Japan Society for Analytical Chemistry. http://www.jsac.or.jp/srm/CRMJSAC0761.pdf. Accessed 19 Sep 2019

  39. IAEA-156. Reference sheet. International Atomic Energy Agency. https://nucleus.iaea.org/rpst/Documents/rs_iaea-156.pdf. Accessed 19 Sep 2019

  40. Snow MS, Snyder DC (2016) 135C/137Cs isotopic composition of environmental samples across Europe: environmental transport and source term emission applications. J Environ Radioact 151:258–263

    Article  CAS  Google Scholar 

  41. Ludwig SB, Renier JP (1989) Standard and extended-Burnup PWR and BWR reactor models for the ORIGEN2 Computer Code. ORNL/TM-11018, Oak Ridge National Laboratory

  42. Isnard H, Granet M, Caussignac C, Ducarme E, Nonell A, Tran B, Chartier F (2009) Comparison of thermal ionization mass spectrometry and multiple collector inductively coupled plasma mass spectrometry for cesium isotope ratio measurements. Spectrochim Acta, Part B 64:1280–1286

    Article  Google Scholar 

Download references

Acknowledgements

This work was partly supported by ImPACT Program of Council for Science, Technology and Innovation (Cabinet Office, Government of Japan). The authors would like to thank Mr. Y. IINUMA, Mr. D. MAKI, Mr. R. OKUMURA, and Mr. H. YOSHINAGA for their support at the Kyoto University Institute for Integrated Radiation and Nuclear Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuji Shibahara.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shibahara, Y., Nakamura, S., Uehara, A. et al. Measurement of cesium isotopic ratio by thermal ionization mass spectrometry for neutron capture reaction studies on 135Cs. J Radioanal Nucl Chem 325, 155–165 (2020). https://doi.org/10.1007/s10967-020-07198-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07198-2

Keywords

Navigation