Skip to main content
Log in

Liquid–liquid extraction of trivalent americium from carbonate and carbonate–peroxide aqueous solutions by methyltrioctylammonium carbonate in toluene

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Liquid–liquid extraction (LLE) of microamounts of americium(III) from Na2CO3 and Na2CO3–H2O2 aqueous solution using methyltrioctylammonium (MTOA) carbonate in toluene has been studied. The distribution ratio of americium(III) into the organic phase can reach values of > 200 from aqueous phases of dilute Na2CO3 and H2O2. With an increase in concentration of Na2CO3 and H2O2 the value of distribution ratio of americium(III) decreases. The stoichiometry of the extracted species of americium(III) was determined on the basis of the slope analysis method. The extracted species are R4N[Am(CO3)2] and (R4N)3[Am(CO3)3], where R4N is MTOA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tomiyasu H, Asano Y (1998) Environmentally acceptable nuclear fuel cycle development of a new reprocessing system. Prog Nucl Energy 32:421–427

    Article  CAS  Google Scholar 

  2. Goff GS, Brodnax LF, Cisneros MR, Williamson KS, Taw FL, May I (2007) Development of a novel alkaline based process for spent nuclear fuel recycling. In: AIChE annual meeting, Salt Lake City, United States

  3. Kim KW, Kim YH, Kim SM, Seo HS, Chung DY, Yang HB, Lim JK, Joe KS, Lee EH (2008) A study on a process for recovery of uranium alone from spent nuclear fuel in a high alkaline carbonate media. NRC 7, Budapest, Hungary

  4. Stepanov SI, Chekmarev AM (2008) Concept of spent nuclear fuel reprocessing. Dokl Chem 423(1):276–278

    Article  CAS  Google Scholar 

  5. Soderquist CZ, Johsen AM, McNamara BK, Hanson BD, Chenault JW, Carson KJ, Peper SM (2011) Dissolution of irradiated commercial UO2 fuels in ammonium carbonate and hydrogen peroxide. J Ind Eng Chem Res 50:1813–1818

    Article  CAS  Google Scholar 

  6. Smirnov IV, Karavan MD, Logunov MV, Tananaev IG, Myasoedov BF (2018) Extraction of radionuclides from alkaline and carbonate media. Radiochemistry 60(5):470–487

    Article  CAS  Google Scholar 

  7. Tananaev IG, Myasoedov BF (2016) Commercial recovery of valuable radionuclides from spent nuclear fuel: methods and approaches. Radiochemistry 58(3):257–264

    Article  CAS  Google Scholar 

  8. Batorshin GSh, Kirillov SN, Smirnov IS, Sarychev GA, Tananaev IG, Fyodorova OV, Myasoedov BF (2015) Complex isolation of valuable components from man-made radioactive waste as an option to create a cost-effective CFC. Vopr Radiats Bezopasn 3(79):30–36

    Google Scholar 

  9. Kozlov PV, Remizov MB, Logunov MV, Koltyshev VK (2013) Process implementation options for preparation of the clarified phase from HLWs accumulated in storage tanks prior to solidification. Vopr Radiats Bezopasn 2:34–47

    Google Scholar 

  10. Choppin GR, Khankhasayev MKh, Plendl HS (2002) Chemical separations in nuclear waste management. Battelle Press, Columbus

    Google Scholar 

  11. Runde W, Brodnax LF, Peper SM, Scott BI, Jarvinen G (2005) Structure and stability of peroxo complexes of uranium and plutonium in carbonate solutions. Actinide 2005, Manchester, United Kingdom

  12. Shilov VP, Yusov AB, Gogolev AV, Fedoseev AM (2005) Behavior of Np(VI) and Np(V) ions in NaHCO3 solutions containing H2O2. Radiochemistry 47(6):558–562

    Article  CAS  Google Scholar 

  13. Goff GS, Brodnax LF, Cisneros MR, Runde WH (2007) Redox chemistry of actinides in peroxide–carbonate media: applications to developing a novel process for spent nuclear fuel reprocessing. In: AIChE annual meeting, Salt Lake City, United States

  14. Coleman JS, Keenan TK, Jones LH, Carnall WT, Penneman RA (1963) Preparation and properties of americium(VI) in aqueous carbonate solutions. Inorg Chem 2(1):58–61

    Article  CAS  Google Scholar 

  15. Silva RJ, Bidoglio G, Robouch PB, Puigdomenech I, Wanner H, Rand MH (1995) Chemical thermodynamics 2. Chemical thermodynamics of americium. Elsevier, Amsterdam

    Google Scholar 

  16. Katz JJ, Seaborg GT, Morss LR (1986) The chemistry of the actinide elements, vol 2, 2nd edn. Chapman and Hall, London

    Book  Google Scholar 

  17. Schmidt VS (1970) Extraction by amines. Atomizdat, Moscow

    Google Scholar 

  18. Moore FL (1966) Improved extraction method for isolation of trivalent actinide–lanthanide elements from nitrat solutions. Anal Chem 38(3):510–512

    Article  CAS  Google Scholar 

  19. Baybarz RD, Weaver BS, Kinser HB (1963) Isolation of transplutonium elements by tertiary amine extraction. Nucl Sci Eng 17(3):457–462

    Article  CAS  Google Scholar 

  20. Goff GS, Long KM, Reilly SD, Jarvinen GD, Runde WH (2012) Americium/lanthanide separation in alkaline solution for advanced nuclear fuel cycles. In: 36th actinide separations conference, Chattanooga, United States, LA-UR-12-21528

  21. Transuranium quarterly progress report for period ending February 28, 1963. ORNL 3482

  22. Brown KB (1963) Chemical technology division, chemical development section C, progress report on separations chemistry and separation process research for January–June, 1963. ORNL 3496

  23. Ueno K, Saito A (1971) Extraction of several elements with trioctylmonomethylammonium chloride. Anal Chim Acta 56(3):427–434

    Article  CAS  Google Scholar 

  24. Alekseeva NA, Bulyanitsa LS, Koval’skaya MP (1974) On extraction of certain actinides by methyltrioctylammonium carbonate. Sov Radiochem 16(5):575–580

    CAS  Google Scholar 

  25. Certificate of authorship USSR No. 664355 (1979) Stepanov SI, Leikin YA, Gorchakov VD, Sergievsky VV, Yagodin GA, Andrievsky VN. The method of obtaining salts or hydroxides of quaternary ammonium bases

  26. Sharlo G (1966) Methods of analytical chemistry. Quantitative analysis of inorganic compounds. Khimiya, Moscow

    Google Scholar 

  27. Fanghänel T, Weger HT, Könnecke T, Neck V, Paviet-Hartmann P, Steinle E, Kim JI (1998) Thermodynamics of Cm(III) in concentrated electrolyte solutions. Carbonate complexation at constant ionic strength (1 M NaCl). Radiochim Acta 82:47–53

    Google Scholar 

  28. Fanghänel T, Könnecke T, Weger H, Paviet-Hartmann P, Neck V, Kim JI (1999) Thermodynamics of Cm(III) in concentrated salt solutions: carbonate complexation in 0–6 M NaCl at 25°C. J Solut Chem 28:447–462

    Article  Google Scholar 

  29. Guillaumont R, Fanghanel T, Fuger J, Grenthe I, Neck V, Palmer DA, Rand MH (2003) Update on the chemical thermodynamics of uranium, neptunium, plutonium, americium and technetium. Elsevier BV, Amsterdam

    Google Scholar 

  30. Chatt A, Rao RR (1989) Complexation of europium(III) with carbonate ions in groundwater. Mater Res Soc Symp Proc 127:897–904

    Article  CAS  Google Scholar 

  31. Rao RR, Chatt A (1991) Studies on stability constants of europium(III) carbonate complexes and application of SIT and ion-pairing models. Radiochim Acta 54:181–188

    CAS  Google Scholar 

  32. Keller C, Fang D (1969) Über karbonatokomplexe des dreiwertigen americiums sowie des vier- und sechswertigen urans und plutoniums. Radiochim Acta 11(3–4):123–127

    CAS  Google Scholar 

  33. Sherry HS, Marinsky JA (1964) Carbonate and bicarbonate complexes of neodymium and europium. Inorganic Chem 3(4):330–335

    Article  CAS  Google Scholar 

  34. de Vasconcellos ME, da Rocha SMR, Pedreira WR, da Queiroz SCA, Abrao A (2008) Solubility behavior of rare earths with ammonium carbonate and ammonium carbonate plus ammonium hydroxide: precipitation of their peroxicarbonates. J Alloy Compd 451:426–428

    Article  Google Scholar 

  35. da Queiroz SCA, de Vasconcellos ME, da Rocha SMR, Seneda JA, Pedreira WR, do Matos RJ, Abrao A (2004) Synthesis and thermoanalytical characterization of samarium peroxocarbonate. J Alloy Compd 374:401–404

    Article  CAS  Google Scholar 

  36. Meinrath G (1991) Carbonate complexation of the trivalent americium under groundwater conditions. Thesis for the degree of Ph.D., Garching, Germany

Download references

Acknowledgements

The work was supported by Dmitry Mendeleev University of Chemical Technology of Russia. Project No. 008-2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander V. Boyarintsev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boyarintsev, A.V., Kostikova, G.V., Stepanov, S.I. et al. Liquid–liquid extraction of trivalent americium from carbonate and carbonate–peroxide aqueous solutions by methyltrioctylammonium carbonate in toluene. J Radioanal Nucl Chem 324, 1031–1038 (2020). https://doi.org/10.1007/s10967-020-07162-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07162-0

Keywords

Navigation