Skip to main content
Log in

Geological and radioactivity studies accompanied by uranium recovery: Um Bogma Formation, southwestern Sinai, Egypt

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

High radioactive anomalies were recorded in the variegated claystones at the middle member of Um Bogma Formation, the eU-content reaches 1030 ppm, while eU/eTh ratio was equivalent to 11.7 times of Clark value. Associated elements with economic values as rare earth elements, vanadium and molybdenum were detected. Beside this, work focusing on uranium recovery from collected samples was investigated using different reagents and leaching techniques. Pug-leaching process using sulfuric acid at 100 °C is the most efficient leaching condition. Selective separation of uranium with high grade (38%) was obtained using synthetic quaternary ammonium sorbent grafted on silica particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Shata A, Aita S, Hosni W, ElSayed A (2011) Lithofacies and radioactivity of the Adedia formation in Ramlet Hemeyir area, southwestern Sinai, Egypt. Sedimentol Egypt 19:1–12

    Google Scholar 

  2. Hamza MF (2019) Grafting of quaternary ammonium groups for uranium (VI) recovery: application on natural acidic leaching liquor. J Radioanal Nucl Chem 322(2):519–532

    CAS  Google Scholar 

  3. Hamza MF (2018) Uranium recovery from concentrated chloride solution produced from direct acid leaching of calcareous shale, Allouga ore materials, southwestern Sinai, Egypt. J Radioanal Nucl Chem 315(3):613–626

    CAS  Google Scholar 

  4. Guettaf H, Becis A, Ferhat K, Hanou K, Bouchiha D, Yakoubi K, Ferrad F (2009) Concentration–purification of uranium from an acid leaching solution. Phys Procedia 2(3):765–771

    CAS  Google Scholar 

  5. Lu B-q, Li M, Zhang X-w, Huang C-m, Wu X-y, Fang Q (2018) Immobilization of uranium into magnetite from aqueous solution by electrodepositing approach. J Hazard Mater 343:255–265

    CAS  PubMed  Google Scholar 

  6. Singh D, Hareendran K, Sreenivas T, Kain V, Dey G (2017) Development of a phosphate precipitation method for the recovery of uranium from lean tenor alkaline leach liquor. Hydrometallurgy 171:228–235

    CAS  Google Scholar 

  7. Nettleton KC, Nikoloski AN, Da Costa M (2015) The leaching of uranium from betafite. Hydrometallurgy 157:270–279

    CAS  Google Scholar 

  8. Nogami M, Fujii Y, Sugo T (1996) Radiation resistance of pyridine type anion exchange resins for spent fuel treatment. J Radioanal Nucl Chem 203(1):109–117

    CAS  Google Scholar 

  9. Zhang B, Li M, Zhang X, Huang J (2016) Kinetics of uranium extraction from uranium tailings by oxidative leaching. JOM 68(7):1990–2001

    CAS  Google Scholar 

  10. Akhtar S, Yang X, Pirajno F (2017) Sandstone type uranium deposits in the Ordos Basin, Northwest China: a case study and an overview. J Asian Earth Sci 146:367–382

    Google Scholar 

  11. Dang DH, Wang W, Pelletier P, Poulain AJ, Evans RD (2018) Uranium dispersion from U tailings and mechanisms leading to U accumulation in sediments: insights from biogeochemical and isotopic approaches. Sci Total Environ 610:880–891

    PubMed  Google Scholar 

  12. Hamza MF, El Aassy IE, Ahmed FY, Abdel-Rahman AA-H, Atta AM (2012) Separation of uranium and rare earth elements with high purity from low-grade gibbsite-bearing shale ore by different chelating resins. J Dispersion Sci Technol 33(4):482–489

    CAS  Google Scholar 

  13. Youlton B, Kinnaird J (2013) Gangue–reagent interactions during acid leaching of uranium. Miner Eng 52:62–73

    CAS  Google Scholar 

  14. Alexandre P, Kyser TK (2005) Effects of cationic substitutions and alteration in uraninite, and implications for the dating of uranium deposits. Can Mineral 43(3):1005–1017

    CAS  Google Scholar 

  15. Aly MM, Hamza MF (2013) A review: studies on uranium removal using different techniques: overview. J Dispersion Sci Technol 34(2):182–213

    CAS  Google Scholar 

  16. Clark D, Neu M, Runde W, Keogh D (2006) Uranium and uranium compounds, Kirk–Othmer encyclopedia of chemical technology. Wiley, Hoboken

    Google Scholar 

  17. Bhargava SK, Ram R, Pownceby M, Grocott S, Ring B, Tardio J, Jones L (2015) A review of acid leaching of uraninite. Hydrometallurgy 151:10–24

    CAS  Google Scholar 

  18. Bajwa I, Nawaz H, Bhatti T (2000) Uranium solubilization from rock phosphate in carbonate leaching media. Int J Agric Biol 2:24–28

    Google Scholar 

  19. Kanai Y (2003) Characterization of U series nuclides in geological materials by selective leaching method. J Radioanal Nucl Chem 255(2):319–323

    CAS  Google Scholar 

  20. Samczyński Z, Dybczyński R (2002) The use of Retardion 11A8 amphoteric ion exchange resin for the the separation and determination of cadmium and zinc in geological and environmental materials by neutron activation analysis. J Radioanal Nucl Chem 254(2):335–341

    Google Scholar 

  21. El-Azony K, Qaim S (2007) Anion-exchange and solvent extraction studies on the separation of radioiodine with particular reference to the production of 123I via proton irradiation of 123Te metal target. J Radioanal Nucl Chem 275(2):275–284

    Google Scholar 

  22. Grate J (2001) Extractive scintillating resin for 99Tc quantification in aqueous solutions. J Radioanal Nucl Chem 249(1):181–189

    Google Scholar 

  23. Suzuki T, Fujii Y, Yan W, Mimura H, Koyama S-i, Ozawa M (2009) Adsorption behavior of VII group elements on tertiary pyridine resin in hydrochloric acid solution. J Radioanal Nucl Chem 282(2):641–644

    CAS  Google Scholar 

  24. Zakrzewska-Koltuniewicz G, Herdzik-Koniecko I, Cojocaru C, Chajduk E (2014) Experimental design and optimization of leaching process for recovery of valuable chemical elements (U, La, V, Mo, Yb and Th) from low-grade uranium ore. J Hazard Mater 275:136–145

    CAS  PubMed  Google Scholar 

  25. Atta AM, Abdel-Rahman AA-H, Hamza MF, El Aassy IE, Ahmed FY (2012) Effect of crosslinker chemical structure and monomer compositions on adsorption of Uranium (VI) ions based on reactive crosslinked acrylamidoxime acrylic acid resins. J Dispersion Sci Technol 33(4):490–496

    CAS  Google Scholar 

  26. Hamza MF, Mahfouz MG, Abdel-Rahman AA-H (2012) Adsorption of uranium (VI) ions on hydrazinyl amine and 1, 3, 4-thiadiazol-2 (3 H)-thion chelating resins. J Dispersion Sci Technol 33(11):1544–1551

    CAS  Google Scholar 

  27. Hua S, Jing-Tian H, Guo-Xin S, Bo-Rong B, Si-Xiu S (2000) Extraction of uranium (VI) by N-octanoylpiperidine in toluene. J Radioanal Nucl Chem 243(3):831–833

    CAS  Google Scholar 

  28. Ali AH, Eliwa AA, Hagag MS (2017) Upgrading of the crude yellow cake to a highly purified form using tris (2-ethylhexyl) phosphate in presence of EDTA or CDTA. J Modern Mater 4(1):37–47

    Google Scholar 

  29. Wang P, Hu E, Wang Q, Lei Z, Wang H, Zhang Y, Hou W, Zhang R (2019) Selective extraction of uranium from uranium–beryllium ore by acid leaching. J Radioanal Nucl Chem 322(2):597–604

    CAS  Google Scholar 

  30. Shapiro L (1975) Rapid analysis of silicate, carbonate, and phosphate rocks-revised edition. US Geological Survey

  31. Davies W, Gray U (1964) A rapid and specific titrimetric method for the precise determination of uranium using iron (II) sulphate as reductant. Talanta 11(8):1203–1211

    CAS  Google Scholar 

  32. Marczenko Z (1975) Spectrophotometric determination of elements. E. Horwood, New York

    Google Scholar 

  33. Goren M (1959) Recovery scheme for poisoned ion exchange resins. Ind Eng Chem 51(4):539–542

    CAS  Google Scholar 

  34. Kaufman D, Lower GW (1954) A summary report on the ion exchange process for the recovery of uranium. American Cyanamid Co., Atomic Energy Division, Raw Materials Development Laboratory, Wayne

    Google Scholar 

  35. Hamza MF, Roux J-C, Guibal E (2019) Metal valorization from the waste produced in the manufacturing of Co/Mo catalysts: leaching and selective precipitation. J Mater Cycles Waste Manage 21(3):525–538

    CAS  Google Scholar 

  36. Bakr A, El Mezayen A, Sherif H, El Nahas H, Ali H (2016) Geology and radioactivity of the paleozoic rocks of Wadi El-Sahu Area, Southwestern Sinai, Egypt. Int J Innovative Sci Eng Technol 3(6):492–517

    Google Scholar 

  37. Clark SP (1966) Handbook of physical constants, vol 97. Geological Society of America

  38. Haskin LA, Haskin MA, Frey FA, Wildeman TR (1968) Relative and absolute terrestrial abundances of the rare earths. In: Pergamon (ed) Origin and distribution of the elements. Elsevier, Amsterdam, pp 889–912

    Google Scholar 

  39. Amer T, El-Sheikh E, Hassanin M, Fathy W (2019) Processing of monazite mineral concentrate for selective recovery of uranium. Chem Afr 2(1):123–134

    CAS  Google Scholar 

  40. Ghorbani Y, Montenegro MR (2016) Leaching behaviour and the solution consumption of uranium–vanadium ore in alkali carbonate–bicarbonate column leaching. Hydrometallurgy 161:127–137

    CAS  Google Scholar 

  41. Gherbi R, Becis A (2015) Fractional factorial design for studying uranium carbonate leaching of Tahaggart’s ore. Int J Miner Process 143:59–64

    CAS  Google Scholar 

  42. Ogbonna N, Petersen J, Laurie H (2006) An agglomerate scale model for the heap bioleaching of chalcocite. J South Afr Inst Min Metall 106(6):433–442

    CAS  Google Scholar 

  43. Hamza MF, El-Aassy IE, Guibal E (2019) Integrated treatment of tailing material for the selective recovery of uranium, rare earth elements and heavy metals. Miner Eng 133:138–148

    CAS  Google Scholar 

  44. El Hazek M, Ahmed F, El Kasaby M, Attia R (2008) Sulfuric acid leaching of polymetallic Abu Zeneima gibbsite-shale. Hydrometallurgy 90(1):34–39

    Google Scholar 

  45. Amer T, Mahdy M, El Hazek N, El Bayoumi R, Hassanein S (2000) Application of acid pugging and ferric salts leaching on West Central Sinai uraniferrous siltstone. In: Uranium 2000: international symposium on the process metallurgy of uranium

  46. Hamza MF (2015) Removal of uranium (VI) from liquid waste of calcareous shale, Allouga, southwestern Sinai, Egypt. Desalin Water Treat 54(9):2530–2540

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Egyptian Nuclear Materials Authority. Yuezhou WEI thanks the support of NSFC Projects (Nos. 11675102, 11975082).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammed F. Hamza or Yuezhou Wei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1141 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamza, M.F., Sallam, O.R., Khalafalla, M.S. et al. Geological and radioactivity studies accompanied by uranium recovery: Um Bogma Formation, southwestern Sinai, Egypt. J Radioanal Nucl Chem 324, 1039–1051 (2020). https://doi.org/10.1007/s10967-020-07149-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07149-x

Keywords

Navigation