Skip to main content
Log in

Magnetic solid-phase extraction of U(VI) in aqueous solution by Fe3O4@hydroxyapatite

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this work, the magnetic hydroxyapatite composite (Fe3O4@HAP) was prepared and used to remove of U(VI). The characterizations of transmission electron microscope and vibrating sample magnetometer indicated that the average size and saturation magnetizations (Ms) of Fe3O4@HAP was about 360 nm and 20.89 emu g−1, respectively. The results of solid-phase extraction indicated that at pH 5.0, the removal efficiency of Fe3O4@HAP was more than 95% within 20 min. The maximum adsorption capacity (qm) of Fe3O4@HAP was 789.58 mg g−1. Therefore, Fe3O4@HAP may be a rapid and highly efficient magnetic adsorbent to remove of U(VI) from water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wang YQ, Zhen Z, Zhao Y, Huang J, Zhang Z, Cao X, Dai Y, Hua R, Liu Y (2018) Adsorption of U(VI) on montmorillonite pillared with hydroxy-aluminum. J Radioanal Nucl Chem 317(1):69–80

    CAS  Google Scholar 

  2. Wang L, Li Z, Wu Q, Huang Z, Yuan L, Chai Z, Shi W (2020) Layered structure-based materials: challenges and opportunities for radionuclide sequestration. Environ Sci Nano 7:724–752

    CAS  Google Scholar 

  3. Ansoborlo E, Lebaron-Jacobs L, Prat O (2015) Uranium in drinking-water: a unique case of guideline value increases and discrepancies between chemical and radiochemical guidelines. Environ Int 77:1–4

    CAS  PubMed  Google Scholar 

  4. Wu Y, Pang H, Liu Y, Wang X, Yu S, Fu D, Chen J, Wang X (2019) Environmental remediation of heavy metal ions by novel-nanomaterials: a review. Environ Pollut 246:608–620

    CAS  PubMed  Google Scholar 

  5. Mehta D, Mazumdar S, Singh S (2015) Magnetic adsorbents for the treatment of water/wastewater—a review. J Water Process Eng 7:244–265

    Google Scholar 

  6. Zhang Z, Dong Z, Wang X, Dai Y, Cao X, Wang Y, Hua R, Feng H, Chen J, Liu Y (2019) Synthesis of ultralight phosphorylated carbon aerogel for efficient removal of U(VI): batch and fixed-bed column studies. Chem Eng J 370:1376–1387

    CAS  Google Scholar 

  7. Han X, Wang Y, Cao X, Dai Y, Liu Y, Dong Z, Zhang Z, Liu Y (2019) Adsorptive performance of ship-type nano-cage polyoxometalates for U(VI) in aqueous solution. Appl Surf Sci 484:1035–1040

    CAS  Google Scholar 

  8. Kulkarni P, Mukhopadhyay S, Bellary M, Ghosh S (2002) Studies on membrane stability and recovery of uranium(VI) from aqueous solutions using a liquid emulsion membrane process. Hydrometallurgy 64(1):49–58

    CAS  Google Scholar 

  9. Hokkanen S, Bhatnagar A, Repo E, Lou S, Sillanpää M (2016) Calcium hydroxyapatite microfibrillated cellulose composite as a potential adsorbent for the removal of Cr(VI) from aqueous solution. Chem Eng J 283:445–452

    CAS  Google Scholar 

  10. Wang Y, Liu YX, Lu H, Yang R, Yang S (2018) Competitive adsorption of Pb(II), Cu(II), and Zn(II) ions onto hydroxyapatite-biochar nanocomposite in aqueous solutions. J Solid State Chem 261:53–61

    CAS  Google Scholar 

  11. Kong L, Ruan Y, Zheng Q, Su M, Diao Z, Chen D, Hou LA, Chang X, Shih K (2020) Uranium extraction using hydroxyapatite recovered from phosphorus containing wastewater. J Hazard Mater 382:120784

    CAS  PubMed  Google Scholar 

  12. Skwarek E, Gładysz-Płaska A, Choromańska J, Broda E (2019) Adsorption of uranium ions on nano-hydroxyapatite and modified by Ca and Ag ions. Adsorption 25(3):639–647

    CAS  Google Scholar 

  13. Kim H, Um W, Kim W-S, Chang S (2017) Synthesis of tributyl phosphate-coated hydroxyapatite for selective uranium removal. Ind Eng Chem Res 56(12):3399–3406

    CAS  Google Scholar 

  14. Yang D, Wang X, Song G, Zhao G, Chen Z, Yu S, Gu P, Wang H, Wang X (2017) One-pot synthesis of arginine modified hydroxyapatite carbon microsphere composites for efficient removal of U(VI) from aqueous solutions. Sci Bull 62(23):1609–1618

    CAS  Google Scholar 

  15. Srilakshmi C, Saraf R (2016) Ag-doped hydroxyapatite as efficient adsorbent for removal of Congo red dye from aqueous solution: synthesis, kinetic and equilibrium adsorption isotherm analysis. Microporous Mesoporous Mat 219:134–144

    CAS  Google Scholar 

  16. Ciobanu G, Barna S, Harja M (2016) Kinetic and equilibrium studies on adsorption of Reactive Blue 19 dye from aqueous solutions by nanohydroxyapatite adsorbent. Arch Environ Prot 42(2):3–11

    Google Scholar 

  17. Wu Y, Chen D, Kong L, Tsang DC, Su M (2019) Rapid and effective removal of uranium(VI) from aqueous solution by facile synthesized hierarchical hollow hydroxyapatite microspheres. J Hazard Mater 371:397–405

    CAS  PubMed  Google Scholar 

  18. Wang Y, Hu L, Zhang G, Yan T, Yan L, Wei Q, Du B (2017) Removal of Pb(II) and methylene blue from aqueous solution by magnetic hydroxyapatite-immobilized oxidized multi-walled carbon nanotubes. J Colloid Interface Sci 494:380–388

    CAS  PubMed  Google Scholar 

  19. Hemmati M, Rajabi M, Asghari A (2018) Magnetic nanoparticle based solid-phase extraction of heavy metal ions: a review on recent advances. Microchim Acta 185(3):160

    Google Scholar 

  20. Wang C, Feng C, Gao Y, Ma X, Wu Q, Wang Z (2011) Preparation of a graphene-based magnetic nanocomposite for the removal of an organic dye from aqueous solution. Chem Eng J 173(1):92–97

    CAS  Google Scholar 

  21. Gong X, Liao G, Xuan S (2012) Full-field deformation of magnetorheological elastomer under uniform magnetic field. Appl Phys Lett 100(21):211909

    Google Scholar 

  22. Zhuang F, Tan R, Shen W, Zhang X, Xu W, Song W (2015) Monodisperse magnetic hydroxyapatite/Fe3O4 microspheres for removal of lead(II) from aqueous solution. J Alloys Compd 637:531–537

    CAS  Google Scholar 

  23. Deng H, Li X, Peng Q, Wang X, Chen J, Li Y (2005) Monodisperse magnetic single-crystal ferrite microspheres. Angew Chem Int Ed 117(18):2842–2845

    Google Scholar 

  24. Chen H, Wang Y, Zhao W, Xiong G, Cao X, Dai Y, Le Z, Zhang Z, Liu Y (2017) Phosphorylation of graphehe oxide to improve adsorption of U(VI) from aquaeous solutions. J Radioanal Nucl Chem 313(1):175–189

    CAS  Google Scholar 

  25. Fannin P, Marin C, Malaescu I, Stefu N (2007) An investigation of the microscopic and macroscopic properties of magnetic fluids. Phys B 388(1–2):87–92

    CAS  Google Scholar 

  26. Aviles MO, Chen H, Ebner AD, Rosengart AJ, Kaminski MD, Ritter JA (2007) In vitro study of ferromagnetic stents for implant assisted-magnetic drug targeting. J Magn Magn Mater 311(1):306–311

    CAS  Google Scholar 

  27. Veisi H, Safarimehr P, Hemmati S (2018) Oxo-vanadium immobilized on polydopamine coated-magnetic nanoparticles (Fe3O4): a heterogeneous nanocatalyst for selective oxidation of sulfides and benzylic alcohols with H2O2. J Taiwan Inst Chem E 88:8–17

    CAS  Google Scholar 

  28. Shinde SK, Dubal DP, Ghodake GS, Fulari VJ (2015) Hierarchical 3D-flower-like CuO nanostructure on copper foil for supercapacitors. RSC Adv 5(6):4443–4447

    CAS  Google Scholar 

  29. Zhang Z, Liu J, Cao X, Luo X, Hua R, Liu Y, Yu X, He L, Liu Y (2015) Comparison of U(VI) adsorption onto nanoscale zero-valent iron and red soil in the presence of U(VI)–CO3/Ca–U(VI)–CO3 complexes. J Hazard Mater 300:633–642

    CAS  PubMed  Google Scholar 

  30. Zhang Z, Dong Z, Dai Y, Xiao S, Cao X, Liu Y, Guo W, Luo M, Le Z (2016) Amidoxime-functionalized hydrothermal carbon materials for uranium removal from aqueous solution. RSC Adv 6(104):102462–102471

    CAS  Google Scholar 

  31. Gao B, Li Y, Chen Z (2009) Adsorption behaviour of functional grafting particles based on polyethyleneimine for chromate anions. Chem Eng J 150(2–3):337–343

    CAS  Google Scholar 

  32. Camacho LM, Deng S, Parra RR (2010) Uranium removal from groundwater by natural clinoptilolite zeolite: effects of pH and initial feed concentration. J Hazard Mater 175(1–3):393–398

    CAS  PubMed  Google Scholar 

  33. Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156(1):2–10

    CAS  Google Scholar 

  34. Xu J, Chen M, Zhang C (2013) Adsorption of uranium(VI) from aqueous solution by diethylenetriamine-functionalized magnetic chitosan. J Radioanal Nucl Chem 298(2):1375–1383

    CAS  Google Scholar 

  35. Zou W, Lei Z (2012) Removal of uranium(VI) from aqueous solution using citric acid modified pine sawdust: batch and column studies. J Radioanal Nucl Chem 292(2):585–595

    CAS  Google Scholar 

  36. Chen R, Chai L, Li Q, Shi Y (2013) Preparation and characterization of magnetic Fe3O4/CNT nanoparticles by RPO method to enhance the efficient removal of Cr(VI). Environ Sci Pollut Res 20(10):7175–7185

    CAS  Google Scholar 

  37. Zou WH, Zhao L, Zhu L (2012) Efficient uranium(VI) biosorption on grapefruit peel: kinetic study and thermodynamic parameters. J Radioanal Nucl Chem 292(3):1303–1315

    CAS  Google Scholar 

  38. Ho Y-S (2006) Review of second-order models for adsorption systems. J Hazard Mater 136(3):681–689

    CAS  PubMed  Google Scholar 

  39. Wu FC, Tseng R-L, Huang S-C, Juang R-S (2009) Characteristics of pseudo-second-order kinetic model for liquid-phase adsorption: a mini-review. Chem Eng J 151(1–3):1–9

    CAS  Google Scholar 

  40. Alkan M, Demirbaş Ö, Doğan M (2007) Adsorption kinetics and thermodynamics of an anionic dye onto sepiolite. Microporous Mesoporous Mat 101(3):388–396

    CAS  Google Scholar 

  41. Qiu H, Lv L, Pan B-c, Zhang Q-j, Zhang W-m, Zhang Q-x (2009) Critical review in adsorption kinetic models. J Zhejiang Univ Sci A 10(5):716–724

    CAS  Google Scholar 

  42. Cheung WH, Szeto YS, McKay G (2007) Intraparticle diffusion processes during acid dye adsorption onto chitosan. Bioresour Technol 98(15):2897–2904

    CAS  PubMed  Google Scholar 

  43. Fuller C, Bargar J, Davis J, Piana M (2002) Mechanisms of uranium interactions with hydroxyapatite: implications for groundwater remediation. Environ Sci Technol 36(2):158–165

    CAS  PubMed  Google Scholar 

  44. Chang MC, Tanaka J (2002) FT-IR study for hydroxyapatite/collagen nanocomposite cross-linked by glutaraldehyde. Biomaterials 23(24):4811–4818

    CAS  PubMed  Google Scholar 

  45. Vidya K, Dapurkar S, Selvam P, Badamali S, Gupta N (2001) The entrapment of UO22+ in mesoporous MCM-41 and MCM-48 molecular sieves. Microporous Mesoporous Mat 50(2–3):173–179

    CAS  Google Scholar 

  46. Sneha M, Sundaram NM (2015) Preparation and characterization of an iron oxide-hydroxyapatite nanocomposite for potential bone cancer therapy. Int J Nanomed. https://doi.org/10.2147/IJN.S79985

    Article  Google Scholar 

  47. Zheng Z, Wan J, Song X, Tokunaga TK (2006) Sodium meta-autunite colloids: synthesis, characterization, and stability. Colloid Surf A 274(1–3):48–55

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (21906017, 21866004, 21866003), the Science and Technology Support Program of Jiangxi Province (Grant No. 2018ACB21007), the Jiangxi Program of Academic and Technical Leaders of Major Disciplines (Grant No. 20182BCB22011), the Project of the Jiangxi Provincial Department of Education (Grant Nos. GJJ160550, GJJ160577, GJJ180385, GJJ180400). The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Youqun Wang or Yunhai Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, D., Dai, Y., Zhang, Z. et al. Magnetic solid-phase extraction of U(VI) in aqueous solution by Fe3O4@hydroxyapatite. J Radioanal Nucl Chem 324, 1329–1337 (2020). https://doi.org/10.1007/s10967-020-07148-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07148-y

Keywords

Navigation