Skip to main content
Log in

Dynamic modulations of the MDA-MB-231 secretions at low dose radiation

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The goal was to investigate the time dynamic nature of the secreted protein profiles at 15–240 kDa, expressed by MDA-MB-231 breast cancer cells, exposed to 240 ± 12 mGy dose. After 2 h, a variety of proteins in the supernatant reduced their concentration up to 10–12 h, as an early event. After 24 h, up- and down-regulations of the secretions of several factors were postulated, indicating significant radio-induced changes. At a late event, in 48–96 h, the findings pointed out to distinct radio-induced modulations characterizing early and late profiles. Such findings suggest dynamic secretome behavior, possibly related to distinct MDA-MB-231 phenotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kang Q, Kai-fu G, Li-jian Y, Zhao-kang Z, Ran W, Hui-shu M, Ya J (2017) A kinetic model of multiple phenotypic states for breast cancer cells. Sci Rep 7:1–11. https://doi.org/10.1038/s41598-017-10321-1

    Article  Google Scholar 

  2. Imamura T, Hikita A, Inoue Y (2012) The roles of TGF-β signaling in carcinogenesis and breast cancer metastasis. Breast Cancer 19:118–124. https://doi.org/10.1007/s12282-011-0321-2

    Article  PubMed  Google Scholar 

  3. Rosen JM, Jordan CT (2009) The increasing complexity of the cancer stem cell paradigm. Science 324:1670–1673. https://doi.org/10.1126/science.1171837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Süel GM, Garcia-Ojalvo J, Liberman LM, Elowitz MB (2006) An excitable gene regulatory circuit induces transient cellular differentiation. Nature 440:254–550. https://doi.org/10.1038/nature04588

    Article  CAS  Google Scholar 

  5. Süel GM, Kulkarni RP, Dworkin J, Garcia-Ojalvo J, Elowitz MB (2007) Tunability and noise dependence in differentiation dynamics. Science 315:1716–1719. https://doi.org/10.1126/science.1137455

    Article  CAS  PubMed  Google Scholar 

  6. Kussell E, Leibler S (2005) Phenotypic diversity, population growth, and information in fluctuating environments. Science 309:2075–2078. https://doi.org/10.1126/science.1114383

    Article  CAS  PubMed  Google Scholar 

  7. Acar M, Mettetal JT, Van Oudenaarden A (2008) Stochastic switching as a survival strategy in fluctuating environments. Nat Genet 40:471. https://doi.org/10.1038/ng.110

    Article  CAS  PubMed  Google Scholar 

  8. Jopling C, Boue S, Belmonte JC (2011) Dedifferentiation, transdifferentiation and reprogramming: three routes to regeneration. Nat Rev Mol Cell Biol 12:79–89. https://doi.org/10.1038/nrm3043

    Article  CAS  PubMed  Google Scholar 

  9. Jordan CT, Guzman ML, Noble M (2006) Cancer stem cells. N Engl J Med 355:1253–1261. https://doi.org/10.1056/NEJMra061808

    Article  CAS  PubMed  Google Scholar 

  10. Dalerba P, Cho RW, Clarke MF (2007) Cancer stem cells: models and concepts. Annu Rev Med 58:267–284. https://doi.org/10.1146/annurev.med.58.062105.204854

    Article  CAS  PubMed  Google Scholar 

  11. Dean M, Fojo T, Bates S (2005) Tumour stem cells and drug resistance. Nat Rev Cancer 5:275–284. https://doi.org/10.1038/nrc1590

    Article  CAS  PubMed  Google Scholar 

  12. Fillmore CM, Kuperwasser C (2008) Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy. Breast Cancer Res 10:R25. https://doi.org/10.1186/bcr1982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Qiu K, Wang L, Shen J, Yousif AAM, He P, Shao D, Zhang X, Kirunda JB, Jia Y (2016) A van der Waals-like transition between normal and cancerous phases in cell populations dynamics of colorectal cancer. Sci Rep 6:36620. https://doi.org/10.1038/srep36620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chaffer CL, Marjanovic ND, Lee T, D’Alessio AC, Young RA, Weinberg RA et al (2013) Poised chromatin at the ZEB1 promoter enables breast cancer cell plasticity and enhances tumorigenicity. Cell 154:61–74. https://doi.org/10.1016/j.cell.2013.06.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Didangelos A, Yin X, Mandal K, Baumert M, Jahangiri M, Mayr M (2010) Proteomics characterization of extracellular space components in the human aorta. Mol Cel Proteomics 9:2048–2062. https://doi.org/10.1074/mcp.M110.001693

    Article  CAS  Google Scholar 

  16. Xiong G-F, Ren Xu (2016) Function of cancer cell-derived extracellular matrix in tumor progression. J Cancer Metastasis Treat 2:357. https://doi.org/10.20517/2394-4722.2016.08

    Article  CAS  Google Scholar 

  17. Levitt SH, Purdy, JA, Perez CA (2004) Technical basis of radiation therapy. In: Practical clinical applications, 4th edn. Springer

  18. Controle de câncer de mama – Documento de consenso (2004) Brasil. Ministério da Saúde. Secretaria de Atenção à Saúde. Instituto Nacional de Câncer. Rio de Janeiro; INCA. https://bvsms.saude.gov.br/bvs/publicacoes/Consensointegra.pdf. Accessed 28 March 2019

  19. INCA, Instituto Nacional do Câncer (2014) htttp://www2.inca.gov.br/wps/wcm/connect/acoes_programas/site/home/nobrasil/programa_congrole_cancer_mama. Accessed 27 November 2014

  20. Mendes BM, Trindade B, Campos TPR (2017) Assessment of radiation-induced secondary cancer risk in the Brazilian population from left-sided breast-3D-CRT using mcnpx. Br J Radiol 90:20170187. https://doi.org/10.1259/bjr.20170187

    Article  PubMed  PubMed Central  Google Scholar 

  21. Chaze T, Hornez L, Chambon C, Haddad I, Vinh J, Peyrat JP, Benderitter M, Guipaud O (2013) Serum proteome analysis for profiling predictive protein markers associated with the severity of skin lesions induced by ionizing radiation. Proteomes 1:40–69. https://doi.org/10.3390/proteomes1020040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Falcão PL, Cuperschmid EM, Trindade BM, Campos TPR (2014) Transforming growth factor-b and matrix metalloproteinase secretion in cell culture from ex-vivo PBMC after exposure to UV radiation. J Biol Regul Homeost Agts 28(2):333–340

    Google Scholar 

  23. Smith BJ (1984) SDS polyacrylamide gel electrophoresis of proteins. Proteins 1:41–56. https://doi.org/10.1385/0-89603-062-8:41

    Article  CAS  Google Scholar 

  24. Lima CV, Campos TPR (2017) Radiation-induced changes in the electrophoretic profile of serum albumin. Braz Arch Biol Technol. https://doi.org/10.1590/1678-4324-2016160246

    Article  Google Scholar 

  25. Lima CV, Campos TPR (2016) Kinetics of the expressions of radiation-induced plasma proteins of the cardiac territory in electrophoresis. J Bras Patol Med Lab 52(3):171–217

    CAS  Google Scholar 

  26. Cailleau R, Young R, Olivé M, Reeves WJ Jr (1974) Breast tumor cell lines from pleural effusions. J Natl Cancer Inst 53:661–674. https://doi.org/10.1093/jnci/53.3.661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. ATCC (2019) MDA-MB-231 (ATCC® HTB-26™) https://www.lgcstandards-atcc.org/products/all/HTB-26.aspx?geo_country=de. Accessed 1 August 2019

  28. Alves J, Nogueira LB, Fontainha CCP, Campos TPR (2018) Doses absorvidas em órgãos internos em phantom feminino de tórax em radiologia diagnóstica, IV SENCIR – Semana de Engenharia Nuclear e Ciências das Radiaçõs, Belo Horizonte, MG, AR-25, pp 1–6

  29. Májek P, Reicheltová Z, Stikarová J, Suttnar J, Sobotková A, Dyr J (2010) Proteome changes in platelets activated by arachidonic acid, collagen and thrombin. Proteome Sci 8:56. https://doi.org/10.1186/1477-5956-8-56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Oakley BR, Kirsch CR, Morris NR (1980) A simplified ultrasensitive silver stain for detecting proteins in polyacrylamide gels. Anal Biochem 105(2):361–363

    Article  CAS  PubMed  Google Scholar 

  31. Rasband WS (1997–2018) ImageJ. U. S. National Institutes of Health, Bethesda, Maryland, USA, https://imagej.nih.gov/ij/

  32. Kim SW, KiM S-J, Langley RR, Fiddler IJ (2015) Modulation of the cancer cell transcriptome by culture media formulations and cell density. Int J Oncol 46:2067–2075. https://doi.org/10.3892/ijo.2015.2930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Agrawal GK, Jwa NS, Lebrun MH, Job D, Rakwal R (2010) Plant secretome: unlocking secrets of the secreted proteins. Proteomics 10(4):799–827. https://doi.org/10.1002/pmic.200900514

    Article  CAS  PubMed  Google Scholar 

  34. Gromova P, Gromova I, Olsena CJ, Timmermans-Wielengab V, Talman M-L, Serizawab RR (1834) Moreirac JMA (2013) Tumor interstitial fluid—a treasure trove of cancer biomarkers. Biochim Biophys Acta (BBA) Proteins Proteomics 11:2259–2270. https://doi.org/10.1016/j.bbapap.2013.01.013

    Article  CAS  Google Scholar 

  35. Paltridge JL, Belle L, Khew-Goodall Y (1834) (2013) The secretome in cancer progression. Biochim Biophys Acta (BBA) Proteins Proteomics 11:2233–2241. https://doi.org/10.1016/j.bbapap.2013.03.014

    Article  CAS  Google Scholar 

  36. Lowry OH, Rosebraugh NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin-Phenol reagent. J Biol Chem 193:265–276

    CAS  PubMed  Google Scholar 

  37. Xie Q, Burnell GM (1994) Interference of Mg2+ and Ca2+ on protein determination with Lowry method. Comp Biochem Physiol 107B(4):605–608

    CAS  Google Scholar 

  38. Santos FR (2012) Método de Lowry: validação e estimativa do método de incerteza. Universidade Estadual Paulista Júlio de Mesquita Filho. Faculdade de Ciências Farmacêuticas – Programa de Pós-graduação em alimentos e nutrição. Araraquara. 63p.

  39. Leszczynski D (2013) Radiation proteomics: the effects of ionizing and non-ionizing radiation on cells and tissues. Helsinki, Finland, ISBN 978-94-007-5896-4

  40. Lima CV, Campos TPR, Valencia CJM, Almeida IG (2018) Physiological and radio-induced modulations of low-weight globulins in distinct vascular compartments. J Radioanal Nucl Chem 318:1317–1324. https://doi.org/10.1007/s10967-018-6188-3

    Article  CAS  Google Scholar 

  41. Ver AB (2008) Molecular biology of the cell, 5th edn. Garland Science, New York

    Google Scholar 

  42. Hargrove JL, Hulsey MG, Beale EG (1991) The kinetics of mammalian gene expression. BioEssays 13:667–674. https://doi.org/10.1002/bies.950131209

    Article  CAS  PubMed  Google Scholar 

  43. Si-Jie L, Xin-Yue L, Hai-Jun L, Wei L, Lei Z, Hua-Qiu C, Song-Gen Y, De-Hai Y, Jiu-Wei C (2016) Low-dose irradiation promotes proliferation of the human breast cancer MDA-MB-231 cells through accumulation of mutant P53. Int J Oncol 50(1):290–296. https://doi.org/10.3892/ijo.2016.3795

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), due to the financial aid from process 456719/2013–0 REBRAT-SUS, due to scholarships and DTI scholar of Iassudara Garcia, and the Coordenação de Apoio aos Programas de Ensino Superior (CAPES). The authors acknowledge the Physiology and Immunology Department to have allowed the use of the Multiskan FC Thermo Scientific reader.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. P. R. Campos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campos, T.P.R., Almeida, I.G. & Mendes, T.M. Dynamic modulations of the MDA-MB-231 secretions at low dose radiation. J Radioanal Nucl Chem 324, 929–940 (2020). https://doi.org/10.1007/s10967-020-07139-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07139-z

Keywords

Navigation