Skip to main content
Log in

Electrochemical precipitation of neptunium with a micro electrochemical quartz crystal microbalance

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Microliter volumes are used in electrochemical detection and preconcentration of radionuclides to reduce the dose received by researchers and equipment. Unfortunately, there is a lack of analysis of radionuclides with coupled electrochemical techniques and microliter volume reactors. The goals of this work are (1) to develop a miniaturized micro-electrochemical quartz crystal microbalance (μeQCM) reactor for use in small volume (50–200 μL) electrogravimetric experiments and (2) to use this reactor to characterize the preconcentration of neptunium on carbon electrodes via electroprecipitation. We successfully deposited neptunium in the new μeQCM reactor and verified its operation. We found that preconcentration of neptunium on carbon coated electrodes was possible by chronoamperometry at − 1.6 VAg/AgCl. The mass shift of the resulting precipitate was indicative of the amount of neptunium on the electrode, although the correlation between the mass increase and activity of the preconcentrated material was not linear. Neptunium precipitate reduced electron transfer to the solution as evidenced by the increase in charge transfer resistance compared to bare electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fox OD et al (2006) Advanced PUREX flowsheets for future Np and Pu fuel cycle demands. In: Separations for the nuclear fuel cycle in the 21st century. American Chemical Society, pp 89–102

  2. Ewing RC (1999) Nuclear waste forms for actinides. Proc Natl Acad Sci 96(7):3432–3439

    Article  CAS  PubMed  Google Scholar 

  3. Yoshida Z et al (2011) Neptunium. In: Morss LR, Edelstein NM, Fuger J (eds) The chemistry of the actinide and transactinide elements. Springer, Dordrecht, pp 699–812

    Google Scholar 

  4. McMillan E, Abelson PH (1940) Radioactive element 93. Phys Rev 57(12):1185

    Article  CAS  Google Scholar 

  5. Hu Q-H, Weng J-Q, Wang J-S (2010) Sources of anthropogenic radionuclides in the environment: a review. J Environ Radioact 101(6):426–437

    Article  CAS  PubMed  Google Scholar 

  6. Veliscek-Carolan J (2016) Separation of actinides from spent nuclear fuel: a review. J Hazard Mater 318:266–281

    Article  CAS  PubMed  Google Scholar 

  7. Niese U (1990) Chemistry of neptunium in solution. Isotopenprax Isot Environ Health Stud 26(8):352–355

    Article  CAS  Google Scholar 

  8. Cauchetier P (1979) Determination of microamounts of neptunium by differential pulse polarography. J Radioanal Chem 51(2):225–231

    Article  CAS  Google Scholar 

  9. Chatterjee S et al (2017) Mechanisms of neptunium redox reactions in nitric acid solutions. Inorg Chem Front 4(4):581–594

    Article  CAS  Google Scholar 

  10. Kihara S et al (1999) A critical evaluation of the redox properties of uranium, neptunium and plutonium ions in acidic aqueous solutions. Pure Appl Chem 71(9):1771

    Article  CAS  Google Scholar 

  11. Kitatsuji Y, Kimura T, Kihara S (2010) Reduction behavior of neptunium(V) at a gold or platinum electrode during controlled potential electrolysis and procedures for electrochemical preparations of neptunium(IV) and (III). J Electroanal Chem 641(1):83–89

    Article  CAS  Google Scholar 

  12. Niese U, Vecernik J (1982) Cyclic voltammetry of neptunium in different media. Isotopenprax Isot Environ Health Stud 18(5):191–192

    Article  CAS  Google Scholar 

  13. Plock CE (1968) Voltammetric determination of neptunium at the glassy carbon electrode. J Electroanal Chem Interfacial Electrochem 18(3):289–293

    Article  CAS  Google Scholar 

  14. Propst RC (1971) Conducting glass electrode in a thin-layer electrochemical cell with application to the analysis of neptunium. Anal Chem 43(8):994–999

    Article  CAS  Google Scholar 

  15. Casadio S, Orlandini F (1971) Cyclic voltammetry of Pu and Np in nitric acid media. J Electroanal Chem Interfacial Electrochem 33(1):212–215

    Article  CAS  Google Scholar 

  16. Noel M, Anantharaman PN (1986) Voltammetric studies on glassy carbon electrodes I: electrochemical behaviour of glassy carbon electrodes in H2SO4, Na2SO4 and NaOH media. Surf Coat Technol 28(2):161–179

    Article  CAS  Google Scholar 

  17. Hindman JC et al (1950) Spectrophotometry of neptunium in perchloric acid solutions. In: Hindman JC, L. Argonne National, and U.S.A.E. Commission (eds) Argonne National Laboratory, Chicago

  18. Hannah ER et al (2019) Neptunium reactivity during co-precipitation and oxidation of Fe(II)/Fe(III) (oxyhydr)oxides. Geosciences 9(1):27

    Article  CAS  Google Scholar 

  19. Krajko J et al (2015) Development of a versatile sample preparation method and its application for rare-earth pattern and Nd isotope ratio analysis in nuclear forensics. J Radioanal Nucl Chem 304(1):177–181

    Article  CAS  PubMed  Google Scholar 

  20. Krajkó J et al (2016) Pre-concentration of trace levels of rare-earth elements in high purity uranium samples for nuclear forensic purposes. Radiochim Acta 104(7):471

    Article  CAS  Google Scholar 

  21. Bard AJ, Parsons R, Jordan J (eds) (1985) Standard potentials in aqueous solution. Monographs in electroanalytical chemistry and electrochemistry. Marcel Dekker, New York, p 834

    Google Scholar 

  22. Doyle JL et al (2017) Characterization of the behavior and mechanism of electrochemical pre-concentration of plutonium from aqueous solution. J Radioanal Nucl Chem 311(1):279–287

    Article  CAS  Google Scholar 

  23. Tran QT et al (2014) Optimization of actinides trace precipitation on diamond/Si PIN sensor for alpha-spectrometry in aqueous solution. IEEE Trans Nucl Sci 61(4):2082–2089

    Article  CAS  Google Scholar 

  24. Babauta JT, Medina A, Beyenal H (2016) EQCM and surface pH studies on lanthanum accumulation on electrodes in aqueous solution. J Electrochem Soc 163(9):H866–H870

    Article  CAS  Google Scholar 

  25. Medina AS et al (2018) Electrochemical preconcentration mechanism of trivalent lanthanum. J Electrochem Soc 165(13):D654–D661

    Article  CAS  Google Scholar 

  26. Choppin Gregory R (1983) Solution chemistry of the actinides. Radiochim Acta 32(1–3):43

    Google Scholar 

  27. Salt D (1987) Hy-Q handbook of quartz crystal devices. Van Nostrand Reinhold (UK) Co. Ltd., England, p 229

  28. Sauerbrey G (1959) Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Zeitschrift für Physik 155(2):206–222

    Article  CAS  Google Scholar 

  29. Vogt S et al (2016) Critical view on electrochemical impedance spectroscopy using the ferri/ferrocyanide redox couple at gold electrodes. Anal Chem 88(8):4383–4390

    Article  CAS  PubMed  Google Scholar 

  30. Bard AJ, Faulkner LR (eds) (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

  31. Casella A et al (2016) MicroRaman measurements for nuclear fuel reprocessing applications. Procedia Chem 21:466–472

    Article  Google Scholar 

  32. Lines AM et al (2018) Multivariate analysis to quantify species in the presence of direct interferents: micro-Raman analysis of HNO3 in microfluidic devices. Anal Chem 90(4):2548–2554

    Article  CAS  PubMed  Google Scholar 

  33. Lines AM et al (2017) Electrochemistry and spectroelectrochemistry of the Pu(III/IV) and (IV/VI) couples in nitric acid systems. Electroanalysis 29(12):2744–2751

    Article  CAS  Google Scholar 

  34. Molina DE et al (2018) A microfluidic platform for electrochemical detection and mechanism studies. Meet Abstr MA2018-01(43):2496

  35. Partridge JA, Jensen RC (1969) Purification of di-(2-ethylhexyl)phosphoric acid by precipitation of copper(II) di-(2-ethylhexyl)phosphate. J Inorg Nucl Chem 31(8):2587–2589

    Article  CAS  Google Scholar 

  36. Lewandowski Z, Beyenal H (2014) Fundamentals of biofilm research, 2nd edn. Taylor & Francis, Boca Raton, p 672

    Google Scholar 

Download references

Acknowledgements

This work was funded by HDTRA-1-14-10069. Mr. A.M. acknowledges NIGMS training Grant T32 GM008336 and the ARCS Foundation of Seattle. The authors thank Dr. Donald Wall for his help in neptunium stock solution purification and preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haluk Beyenal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 70 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schafer Medina, A., Tibbits, G., Wall, N.A. et al. Electrochemical precipitation of neptunium with a micro electrochemical quartz crystal microbalance. J Radioanal Nucl Chem 324, 1021–1030 (2020). https://doi.org/10.1007/s10967-020-07138-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07138-0

Keywords

Navigation