Skip to main content
Log in

Application of PGNAA utilizing thermal neutron beam for quantification of boron concentrations in ceramic and refractory neutron absorbers

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A Prompt Gamma-ray Neutron Activation Analysis (PGNAA) facility was set up using a thermal neutron beam at Dhruva research reactor. It was utilized for non-destructive quantification of total boron in refractory neutron absorbers and 10B atom% in B4C ceramics having natural and enriched 10B composition by measuring the 478 keV prompt gamma-ray from 10B(n,αγ)*7Li. Self-shielding correction was carried out for higher boron concentration samples using chlorine as an internal standard. As a part of quality assurance, the results of PGNAA were compared with those obtained by in situ current normalized Particle Induced Gamma-ray Emission (PIGE) method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Paul RL, Lindstrom RM (2000) Prompt gamma-ray activation analysis: fundamentals and applications. J Radioanal Nucl Chem 243:181–189

    Article  CAS  Google Scholar 

  2. Molnar GL (ed) (2004) Handbook of prompt gamma activation analysis with neutron beams. Kluwer Academic Publishers, London

    Google Scholar 

  3. Yonezawa C, Matsue H (2000) Usefulness of prompt gamma-ray analysis with guided neutron beams compared to NAA. J Radioanal Nucl Chem 244:373–378

    Article  CAS  Google Scholar 

  4. Acharya R (2009) Prompt gamma-ray neutron activation analysis methodology for determination of boron from trace to major contents. J Radioanal Nucl Chem 281:291–294

    Article  CAS  Google Scholar 

  5. Sudarshan K, Tripathi R, Nair AGC, Acharya R, Reddy AVR, Goswami A (2005) Analysis of reference materials by prompt γ-ray neutron activation analysis and evaluation of sample-dependent background. Anal Chim Acta 535:309–315

    Article  CAS  Google Scholar 

  6. Sudarshan K, Tripathi R, Nair AGC, Acharya R, Reddy AVR, Goswami A (2005) A simple method for correcting the neutron self-shielding effect of matrix and improving the analytical response in prompt gamma-ray neutron activation analysis. Anal Chim Acta 549:205–211

    Article  CAS  Google Scholar 

  7. Zhang Z, Chong Y, Chen X, Jin C, Yang L, Liu T (2015) PGNAA system preliminary design and measurement of In-Hospital Neutron Irradiator for boron concentration measurement. Appl Radiat Isot 106:161–165

    Article  CAS  Google Scholar 

  8. Ramanjaneyulu PS, Sayi YS, Newton Nathaniel T, Reddy AVR, Ramakumar KL (2007) Determination of boron in water samples by chemical prompt gamma neutron activation analysis. J Radioanal Nucl Chem 273(2):411–414

    Article  CAS  Google Scholar 

  9. Vengosh A, Heumann KG, Juraske S, Kasher R (1994) Boron isotope application for tracing sources of contamination in groundwater. Environ Sci Technol 28:1968–1974

    Article  CAS  Google Scholar 

  10. Vengosh A, Spivack AJ, Artzi Y, Ayalon A (1999) Geochemical and boron, strontium, and oxygen isotopic constraints on the origin of the salinity in ground water from the Mediterranean coast of Israel. Water Resour Res 35(6):1877–1894

    Article  CAS  Google Scholar 

  11. Acharya R, Sk WR, ChhillarSumit GJ, Sonber JK, Ch MTSR, SasiBhushan K, Rao Radhika M, Majumdar S, Pujari PK (2018) Non-destructive quantification of total boron and its isotopic composition in boron based refractory materials by PIGE and inter-comparison study using TIMS and titrimetry. J Anal At Spectrom 33:784–791

    Article  CAS  Google Scholar 

  12. Raja SW, Acharya R, Pujari PK (2020) Applications of PIGE methods for quantification of total boron in neutron absorbers and shielding materials and isotopic composition in boron carbide samples. J Radioanal Nucl Chem 323:1359–1366

    Article  CAS  Google Scholar 

  13. Sah RN, Brown PH (1997) Boron determination-a review of analytical methods. Microchem J 56:285–304

    Article  CAS  Google Scholar 

  14. Farhat A, Ahmad F, Arafat H (2013) Analytical techniques for boron quantification supporting desalination processes: a review. Desalination 310:9–17

    Article  CAS  Google Scholar 

  15. Downing RG, Lamaze GP, Langland JK, Hwang ST (1993) Neutron depth profiling: overview and description of NIST facilities. J Res Natl Inst Stand Technol 98:109–126

    Article  CAS  Google Scholar 

  16. Szentmiklósi L, Gméling K, Révay Z (2007) Fitting the boron peak and resolving interferences in the 450–490 keVregionof PGAA spectra. J Radioanal Nucl Chem 271(2):447–453

    Article  Google Scholar 

  17. Riley JE Jr, Lindstrom RM (1987) Determination of boron in borosilicate glasses by neutron capture prompt gamma-ray activation analysis. J Radioanal Nucl Chem 109(1):109–115

    Article  CAS  Google Scholar 

  18. Mukhopadhyay PK (2001) Theoperating software of the PHAST PC-MCA card. In: Proceedings of the symposium on intelligent nuclear instrumentation (INIT-2001), Mumbai, India, pp 307–310

  19. Chhillar S, Acharya R, Sodaye S, Pujari PK (2014) Development of particle induced gamma-Ray emission methods for nondestructive determination of isotopic composition of boron and its total concentration in natural and enriched samples. Anal Chem 8:11167–11173

    Article  Google Scholar 

  20. Acharya R, Pujari PK (2018) Development and applications of in situ current normalized PIGE method using proton beams for quantification of low Z elements. J Radioanal Nucl Chem 318:1727–1735

    Article  CAS  Google Scholar 

  21. Baechler S, Kudejova P, Jolie J, Schenker J-L, Stritt N (2002) Prompt gamma-ray activation analysis for determination of boron in aqueous solutions. Nucl Instrum Methods Phys Res A 488:410–418

    Article  CAS  Google Scholar 

  22. Yonezawa C, Ruska PP, Matsue H, Magara M, Adachi T (1999) Determination of boron in Japanese geochemical reference samples by neutron-induced prompt gamma-ray analysis. J Radioanal Nucl Chem 239(3):571–575

    Article  CAS  Google Scholar 

  23. Tzika F, Stamatelatos IE (2004) Thermal neutron self-shielding correction factors for large sample instrumental neutron activation analysis using the MCNP code. Nucl Instrum Methods B 213:177–181

    Article  CAS  Google Scholar 

  24. Acharya RN, Sudarshan K, Nair AGC, ScindiaY M, Goswami A, Reddy AVR, Manohar SB (2001) Measurement of k0-factors in prompt gamma-ray neutron activation analysis. J Radioanal Nucl Chem 250(2):303–307

    Article  CAS  Google Scholar 

  25. Acharya RN, Nair AGC, Sudarshan K, Goswami A, Reddy AVR (2008) Development and applications of k0 based NAA and prompt gamma-ray NAA methods at BARC. J Radioanal Nucl Chem 278(3):617–620

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors thank Dr. S. M. Yusuf, Head, Solid State Physics Division (SSPD), BARC and Dr. (Mrs.) Mala N. Rao of SSPD, BARC for their support by providing the neutron beam facility at GT Lab, Dhruva reactor for this work. Authors thank Head, MP&CED, BARC and his colleagues for their help and permission to use some of these samples of interest. The results presented in this manuscript are part of Ph.D. thesis work of Sk Wasim Raja under Homi Bhabha National Institute (HBNI). Mr. V. Sharma is thankful to CSIR, New Delhi for Junior Research Fellowship (JRF) and he sincerely thanks Director, RC&IG and Head, RCD, BARC and Principal, K C College, Mumbai for their support and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Acharya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raja, S.W., Samanta, S.K., Sharma, V. et al. Application of PGNAA utilizing thermal neutron beam for quantification of boron concentrations in ceramic and refractory neutron absorbers. J Radioanal Nucl Chem 325, 933–940 (2020). https://doi.org/10.1007/s10967-020-07136-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07136-2

Keywords

Navigation