Skip to main content
Log in

Flexible surface-supported MOF membrane via a convenient approach for efficient iodine adsorption

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Flexible surface-supported MOF membranes were successfully prepared on cloth by a simple method and used for iodine adsorption for the first time. CuAceAd crystals were synthesized and deposited in situ on the cloth at 50 ℃. The synthesis of the membranes proved to be robust, stable and consistent, as demonstrated by the SEM and XRD. The adsorption properties of the MOF membranes were measured in iodine vapor and iodine/cyclohexane solution, which showed a maximum iodine sorption capacity of 609.76 mg g−1 in the vapor and 144 mg g−1 in the solution, respectively. Additionally, the membranes displayed excellent regeneration ability. These results implied that the easy-obtained and environmental-friendly flexible MOF membranes have a great potential for engineering application in iodine adsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig.9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Han X, Xu M, Yang S, Qian J, Hua D (2017) Acetylcysteine-functionalized microporous conjugated polymers for potential separation of uranium from radioactive effluents. J Mater Chem A 5:5123–5128

    CAS  Google Scholar 

  2. Acharya R, Subbaiah T, Anand S, Das RP (2002) Preparation, characterization and electrolytic behavior of β-nickel hydroxide. J Power Sources 109:494–499

    CAS  Google Scholar 

  3. Acharya R, Naik B, Parida K (2018) Cr(VI) remediation from aqueous environment through modified-TiO2-mediated photocatalytic reduction. Beilstein J Nanotechnol 9:1448–1470

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Zeng DQ, Lu ZQ, Gao XY, Wu BJ, Ong WJ (2019) Hierarchical flower-like ZnIn2S4 anchored with well-dispersed Ni12P 5 nanoparticles for high-quantum- yield photocatalytic H2 evolution under visible light. Catal Sci Technol 9:4010–4016

    CAS  Google Scholar 

  5. Soelbreg NR, Garn TG, Greenhalgh MR, Law JD, Jubin R, Strachan DM, Thallapally PK (2013) Radioactive iodine and krypton control for nuclear fuel reprocessing facilities. Sci Technol Nucl Install 2013:1–12

    Google Scholar 

  6. Jabbar T, Wallner G, Steier P (2013) A review on 129 I analysis in air. J Environ Radioactiv 126:45–54

    CAS  Google Scholar 

  7. Jiang Q, Huang HL, Tang YZ, Zhang YX, Zhong CL (2018) Highly porous covalent triazine frameworks for reversible iodine capture and efficient removal of dye. Ind Eng Chem Res 57:15114–15121

    CAS  Google Scholar 

  8. Riley BJ, Vienna JD, Strachan DM, McCloy JS (2016) Materials and processes for the effective capture and immobilization of radioiodine: A review. J Nucl Mater 470:307

    CAS  Google Scholar 

  9. Audubert F, Carpena J, Lacout JL, Tetard F (1997) Elaboration of an iodine-bearing apatite Iodine diffusion into a Pb3(VO4)2 matrix. Solid State Ionics 95:113–119

    CAS  Google Scholar 

  10. Garino TJ, Nenoff TM, Krumhansl JL, Rademacher DX (2011) Low-temperature sintering Bi-Si-Zn-Oxide glasses for use in either glass composite materials or core/shell 129I waste forms. J Am Ceram Soc 94:2412–2419

    CAS  Google Scholar 

  11. Acharya R, Naik B, Parida KM (2018) Adsorption of Cr (VI) and textile dyes on to mesoporous silica, titanate nanotubes, and layered double hydroxides. Nanomaterials in the Wet Processing of Textiles: 219–260

  12. Acharya R, Parida K (2020) A review on adsorptive remediation of Cr (VI) by magnetic iron oxides and their modified forms. Biointerface Research in Applied Chemistry 2:5266–5272

    Google Scholar 

  13. Soelberg NR, Garn TG, Greenhalgh MR, Law JD, Jubin R, Strachan DM, Thallapally PK (2013) Radioactive iodine and krypton control for nuclear fuel reprocessing facilities. Sci Technol Nucl Install 2013:1–12

    Google Scholar 

  14. Sun H, La P, Zhu Z, Liang W, Yang B, Li A (2015) Capture and reversible storage of volatile iodine by porous carbon with high capacity. J Mater Sci 50:7326–7332

    CAS  Google Scholar 

  15. Subrahmanyam KS, Malliakas CD, Sarma D, Armatas GS, Wu J, Kanatzidis MG (2015) Ion-exchangeable molybdenum sulfide porous chalcogel: gas adsorption and capture of iodine and mercury. J Am Chem Soc 137:13943–13948

    CAS  PubMed  Google Scholar 

  16. Sava DF, Rodriguez MA, Chapman KW, Chupas PJ, Greathouse JA, Crozier PS, Nenoff TM (2011) Capture of volatile iodine, a gaseous fission product, by zeolitic imidazolate framework-8. J Am Chem Soc 133:12398–12401

    CAS  PubMed  Google Scholar 

  17. Carboni M, Abney CW, Liu S, Lin W (2013) Highly porous and stable metal-organic frameworks for uranium extraction. Chem Sci 4:2396–2402

    CAS  Google Scholar 

  18. Mueller U, Schubert M, Teich F, Puetter H, Schierle AK, Pastré J (2006) Metal-organic frameworks-prospective industrial applications. J Mater Chem 16:626–636

    CAS  Google Scholar 

  19. Fei H, Rogow DL, Oliver SRJ (2010) Reversible anion exchange and catalytic properties of two cationic metal-organic frameworks based on Cu(I) and Ag(I). J Am Chem Soc 132:7202–7209

    CAS  PubMed  Google Scholar 

  20. Seo JS, Whang D, Lee H, Jun SI, Oh J, Jeon YJ, Kim K (2000) A homochiral metal- organic porous material for enantioselective separation and catalysis. Nature 404:982–986

    CAS  PubMed  Google Scholar 

  21. Taylor KML, Rieter J, Lin W (2008) Manganese-based nanoscale metal-organic frameworks for magnetic resonance imaging. J Am Chem Soc 130:14358–14359

    CAS  PubMed  Google Scholar 

  22. Yuan GY, Tian Y, Liu J, Tu H, Liao JL, Yang JJ, Yang YY, Wang DQ, Liu N (2017) Schiff base anchored on metal-organic framework for Co (II) removal from aqueous solution. Chem Eng J 326:691–699

    CAS  Google Scholar 

  23. Yuan GY, Tu H, Liu J, Zhao CS, Liao JL, Yang YY, Yang JJ, Liu N (2018) A novel ion-imprinted polymer induced by the glycylglycine modified metal-organic framework for the selective removal of Co(II) from aqueous solutions. Chem Eng J 333:280–288

    CAS  Google Scholar 

  24. Li JR, Kuppler RJ, Zhou HC (2009) Selective gas adsorption and separation in metal-organic frameworks. Chem Soc Rev 38:1477–1504

    CAS  PubMed  Google Scholar 

  25. Assaad T, Assfour B (2017) Metal organic framework MIL-101 for radioiodine capture and storage. J Nucl Mater 493:6–11

    CAS  Google Scholar 

  26. Sava DF, Chapman KW, Rodriguez MA, Greathouse JA, Crozier PS, Zhao HY, Chupas PJ, Nenoff TM (2013) Competitive I2 sorption by Cu-BTC from humid gas streams. Chem Mater 25:2591–2596

    CAS  Google Scholar 

  27. Yao RX, Cui X, Jia XX, Zhang FQ, Zhang XM (2016) A Luminescent zinc(II) metal-organic framework (MOF) with conjugated π-electron ligand for high iodine capture and nitro-explosive detection. Inorg Chem 55:9270–9275

    CAS  PubMed  Google Scholar 

  28. Yuan S, Deng YK, Sun D (2014) Unprecedented second-timescale blue/green emissions and iodine-uptake-induced single-crystal-to-single-crystal transformation in Zn(II)/Cd(II) metal-organic frameworks. Chem Eur J 20:10093–10098

    CAS  PubMed  Google Scholar 

  29. Hughes JT, Sava DF, Nenoff TM, Navrotsky A (2013) Thermochemical evidence for strong iodine chemisorption by ZIF-8. J Am Chem Soc 135:16256–16259

    CAS  PubMed  Google Scholar 

  30. Yang C, Cheng J, Chen Y, Hu Y (2017) Enhanced adsorption performance of MoS2 nanosheet-coated MIL-101 hybrids for the removal of aqueous rhodamine B. J Colloid Interface Sci 504:39–47

    CAS  PubMed  Google Scholar 

  31. Bétard A, Fischer RA (2012) Metal-organic framework thin films: from fundamentals to applications. Chem Rev 112:1055–1083

    PubMed  Google Scholar 

  32. Usman M, Mendiratta S, Lu KL (2015) Metal-organic frameworks: new interlayer dielectric materials. Chem-Electro Chem 2:786–788

    CAS  Google Scholar 

  33. Bétard A, Bux H, Henke S, Zacher D, Caro J, Fischer RA (2012) Fabrication of a CO2-selective membrane by stepwise liquid-phase deposition of an alkylether functionalized pillared-layered metal-organic framework [Cu2L2P]n on a macroporous support. Microporous Mesoporous Mater 150:76–82

    Google Scholar 

  34. Hermes S, Schröter MK, Schmid R, Khodeir L, Muhler M, Tissler A, Fischer RW, Fischer RA (2005) Metal@MOF: loading of highly porous coordination polymers host lattices by metal organic chemical vapor deposition. Angew Chem Int Ed 44:6237–6241

    CAS  Google Scholar 

  35. Jiang DM, Burrows AD, Xiong YL, Edler KJ (2013) Facile synthesis of crack-free metal-organic framework films on alumina by a dip-coating route in the presence of polyethylenimine. J Mater Chem A 1:5497–5500

    CAS  Google Scholar 

  36. Huang A, Caro J (2011) Covalent post-functionalization of zeolitic imidazolate framework ZIF-90 membrane for enhanced hydrogen selectivity. Angew Chem Int Ed 50:4979–4982

    CAS  Google Scholar 

  37. Hermes S, Schrföder F, Chelmowski R, Wöll C, Fischer RA (2005) Selective nucleation and growth of metal-organic open framework thin films on patterned COOH/CF3-terminated self-assembled monolayers on Au(111). J Am Chem Soc 127:13744–13745

    CAS  PubMed  Google Scholar 

  38. Lu G, Hupp JT (2010) Metal-organic frameworks as sensors: a ZIF-8 based fabry-perot device as a selective sensor for chemical vapors and gases. J Am Chem Soc 132:7832–7833

    CAS  PubMed  Google Scholar 

  39. Horcajada P, Serre C, Grosso D, Boissiere C, Perruchas S, Sanchez C, Férey G (2009) Colloidal route for preparing optical thin films of nanoporous metal-organic frameworks. Adv Mater 21:1931–1935

    CAS  Google Scholar 

  40. Demessence A, Horcajada P, Serre C, Boissiere C, Grosso D, Sanchez C, Ferey G (2009) Elaboration and properties of hierarchically structured optical thin films of MIL-101(Cr). Chem Commun 46:7149–7151

    Google Scholar 

  41. Lu Q, Zhao M, Chen J, Chen B, Tan C, Zhang X, Huang Y, Yang J, Cao F, Yu Y (2016) In situ synthesis of metal sulfide nanoparticles based on 2D metal-organic framework nanosheets. Small 12:4669–4674

    CAS  PubMed  Google Scholar 

  42. Li FZ, Li DM, Li XL, Liao JL, Li SJ, Yang JJ, Yang YY, Tang J, Liu N (2016) Microorganism-derived carbon microspheres for uranium removal from aqueous solution. Chem Eng J 284:630–639

    CAS  Google Scholar 

  43. Hod I, Bury W, Karlin DM, Deria P, Kung CW, Katz MJ, So M, Klahr B, Jin DN, Chung YW, Odom TW, Farha OK, Hupp JT (2014) Directed growth of electroactive metal-organic framework thin films using electro-phoretic deposition. Adv Mater 26:6295–6300

    CAS  PubMed  Google Scholar 

  44. Ameloot R, Stappers L, Fransaer J, Alaerts L, Sels BF, Vos DED (2009) Patterned growth of metal-organic framework coatings by electrochemical synthesis. Chem Mater 21:2580–2582

    CAS  Google Scholar 

  45. Liu J, Sun F, Zhang F, Wang Z, Zhang R, Wang C, Qiu S (2011) In situ growth of continuous thin metal-organic framework film for capacitive humidity sensing. J Mater Chem 21:3775

    CAS  Google Scholar 

  46. Ranjan R, Tsapatsis M (2009) Microporous metal organic framework membrane on porous support using the seeded growth method. Chem Mater 21:4920–4294

    CAS  Google Scholar 

  47. Li WJ, Gao SY, Liu TF, Han LW, Lin ZJ, Cao R (2013) In situ growth of metal-organic framework thin films with gas sensing and molecule storage properties. Langmuir 29:8657–8664

    CAS  PubMed  Google Scholar 

  48. Liu X, Ge L, Li W, Wang X, Li F (2015) Layered double hydroxide functionalized textile for effective oil/water separation and selective oil adsorption. ACS Appl Mater Interfaces 7:791–800

    CAS  PubMed  Google Scholar 

  49. Zhuang JL, Ar D, Yu XJ, Liu JX, Terfort A (2013) Patterned deposition of metal-organic frameworks onto plastic, paper, and textile substrates by inkjet printing of a precursor solution. Adv Mater 25:4631–4635

    CAS  PubMed  Google Scholar 

  50. Giannakoudakis DA, Hu Y, Florent M, Bandosz TJ (2017) Smart textiles of MOF/g-C3N4 nanospheres for the rapid detection/detoxification of chemical warfare agents. Nanoscale Horiz 2:356–364

    CAS  PubMed  Google Scholar 

  51. Yang WX, Wang J, Yang QF, Pei HN, Hu N, Suo YR, Li ZH, Zhang DH, Wang JL (2018) Facile fabrication of robust MOF membranes on cloth via a CMC macromolecule bridge for highly efficient Pb(II) removal. Chem Eng J 339:230–239

    CAS  Google Scholar 

  52. Song YN, Yin XB, Tu BB, Pang QQ, Li HW, Ren XQ, Wang B, Li QW (2014) Metal-organic frameworks constructed from mixed infinite inorganic units and adenine. CrystEngComm 16:3082–3085

    CAS  Google Scholar 

  53. Amo-Ochoa P, Zamora F (2014) Coordination polymers with nucleobases: from structural aspects to potential applications. Coord Chem Rev 276:34–58

    CAS  Google Scholar 

  54. Pérez-Yáñez S, Beobide G, Castillo O, Cepeda J, Luque A, Aguayo AT, Román P (2011) Open-framework copper adeninate compounds with three-dimensional microchannels tailored by aliphatic monocarboxylic acids. Inorg Chem 50:5330–5332

    PubMed  Google Scholar 

  55. Guo XH, Tian Y, Zhang MC, Li Y, Wen R, Li X, Li XF, Xue Y, Ma LJ, Xia CQ, Li SJ (2018) Mechanistic insight into hydrogen-bond-controlled crystallinity and adsorption property of covalent organic frameworks from flexible building blocks. Chem Mater 30:2299–2308

    CAS  Google Scholar 

  56. Qian X, Zhu Z, Sun H, Ren F, Mu P, Liang W, Chen L, Li A (2016) Capture and reversible storage of volatile iodine by novel conjugated microporous polymers containing thiophene units. ACS Appl Mater Interfaces 8:21063–20169

    CAS  PubMed  Google Scholar 

  57. Tripathy SP, Subudhi S, Acharya R, Acharya R, Das M, Parida K (2019) Adsorptive removal of Cr(VI) onto UiO-66-NH2 and its determination by radioanalytical techniques. J Radioanal Nucl Chem 322:983–992

    CAS  Google Scholar 

  58. Tripathy SP, Acharya R, Das M, Acharya R, Parida K (2020) Adsorptive remediation of Cr (VI) from aqueous solution using cobalt ferrite: Kinetics and isotherm studies. Mater. Today: Proceedings

  59. Acharya R, Martha S, Parida KM (2017) Remediation of Cr (VI) Using Clay Minerals, Biomasses and Industrial Wastes as Adsorbents. Advanced Materials for Wastewater Treatment.: 129–170

  60. Zhang X, Silva ID, Godfrey HGW, Callear SK, Sapchenko SA, Cheng YQ, Vitórica-Yrezábal I, Frogly MD, Cinque G, Tang CC, Giacobbe C, Dejoie C, Rudić S, Ramirez-Cuesta AJ, Denecke MA, Yang SH, Schröder M, (2017) Confinement of iodine molecules into triple-helical chains within robust metal—organic frameworks. J Am Chem Soc 139:16289–16296

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Zou H, Yi F, Song M, Wang X, Bian L, Li W, Pan N, Jiang X (2019) Novel synthesis of Bi-Bi2O3-TiO2-C composite for capturing iodine-129 in off-gas. J Hazard Mater 365:81–87

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

National Natural Science Foundation of China (Grant No. 21876122) support the work. Thank the Analytical & Testing Center of Sichuan University for Thermogravimetric analysis work and we would be grateful to Shaolan Wang for her help of TGA test.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuanyou Yang or Ning Liu.

Ethics declarations

Conflict of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 8478 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Yuan, G., Zeng, Y. et al. Flexible surface-supported MOF membrane via a convenient approach for efficient iodine adsorption. J Radioanal Nucl Chem 324, 1167–1177 (2020). https://doi.org/10.1007/s10967-020-07135-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07135-3

Keywords

Navigation