Skip to main content
Log in

Impregnated fly ash sorbent for cesium-137 removal from water samples

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Cesium-137 is an important indicator of radioactive pollution in the aquatic environment. The aim of this study was to increase the sorption capacity of fly ash by its modification using hexacyanoferrate impregnation. According to the results, the Langmuir model was more likely to be correct than the Freundlich model. The maximum sorption capacity qmax was 1.59 mmol/g, i.e. 210 mg Cs+ per 1 g of the prepared sorbent. There was no significant decrease in the sorption capacity in the presence of both monovalent and divalent competitive cations. At the volume of 1–42 L the yield of Cs sorption was above 90%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Clearfield A (2010) Seizing the caesium. Nat Chem 2:161–162. https://doi.org/10.1038/nchem.567

    Article  CAS  PubMed  Google Scholar 

  2. Ashraf MA, Akib S, Maah MJ, Yusoff I, Balkhair KS (2014) Cesium-137: radio-chemistry, fate, and transport, remediation, and future concerns. Crit Rev Environ Sci Tech 44:1740–1793. https://doi.org/10.1080/10643389.2013.790753

    Article  CAS  Google Scholar 

  3. Ahearne JF (1997) Radioactive waste: the size of the problem. Phys Today 50(6):24–29. https://doi.org/10.1063/1.881763

    Article  CAS  Google Scholar 

  4. Behrens EA, Sylvester P, Clearfield A (1998) Assessment of a sodium nonatitanate and pharmacosiderite-type ion exchangers for strontium and cesium removal from DOE waste simulants. Environ Sci Technol 32:101–107. https://doi.org/10.1021/es9704794

    Article  CAS  Google Scholar 

  5. Ahmaruzzaman M (2010) A review on the utilization of fly ash. Prog Energy Combust Sci 36:327–363. https://doi.org/10.1016/j.pecs.2009.11.003

    Article  CAS  Google Scholar 

  6. Kaminski MD (2009) Physical properties of alumino-silicate waste form for cesium and strontium. J Nucl Mater 293:510–518. https://doi.org/10.1016/j.jnucmat.2009.04.020

    Article  CAS  Google Scholar 

  7. Mimura H, Lehto J, Harjula R (1997) Selective removal of cesium from simulated high-level liquid wastes by insoluble ferrocyanides. J Nucl Sci Tech 34(6):607–609. https://doi.org/10.1080/18811248.1997.9733715

    Article  CAS  Google Scholar 

  8. Iyer RS, Scott AJ (2001) Power station fly ash—a review of value-added utilization outside of the construction industry. Resour Conserv Recy 31:217–228. https://doi.org/10.1016/S0921-3449(00)00084-7

    Article  Google Scholar 

  9. Shin JM, Park JJ, Song KC, Kim JH (2009) Trapping behavior of gaseous cesium by fly ash filters. Appl Radiat Isotopes 67:1534–1539. https://doi.org/10.1016/j.apradiso.2009.02.070

    Article  CAS  Google Scholar 

  10. Li Q, Sun Z, Tao D, Xu Y, Li P, Cui H, Zhai J (2013) Immobilization of simulated radionuclide 133Cs+ by fly ash-based geopolymer. J Hazard Mater 262:325–331. https://doi.org/10.1016/j.jhazmat.2013.08.049

    Article  CAS  PubMed  Google Scholar 

  11. Li D, Kaplan DI, Knox AS, Crapse KP, Diprete DP (2014) Aqueous 99Tc, 129I and 137Cs removal from contaminated groundwater and sediments using highly effective low-cost sorbents. J Environ Radioact 136:56–63. https://doi.org/10.1016/j.jenvrad.2014.05.010

    Article  CAS  PubMed  Google Scholar 

  12. Apak R, Atun G, Güçlü K, Tütem E (1996) Sorptive removal of cesium-137 and strontium-90 from water by unconventional sorbents. II. Usage of coal fly ash. J Nucl Sci Tech 33(5):396–402. https://doi.org/10.3327/jnst.33.396

    Article  CAS  Google Scholar 

  13. Mimura H, Yokota K, Akiba K, Onodera Y (2001) Alkali hydrothermal synthesis of zeolites from coal fly ash and their uptake properties of cesium ion. J Nucl Sci Tech 38(9):766–772. https://doi.org/10.1080/18811248.2001.9715093

    Article  CAS  Google Scholar 

  14. Vrtoch Ľ, Pipíška M, Horník M, Augustín J, Lesný J (2011) Sorption of cesium from water solutions on potassium nickel hexacyanoferrate-modified Agaricus bisporus mushroom biomass. J Radioanal Nucl Chem 287:853–862. https://doi.org/10.1007/s10967-010-0837-5

    Article  CAS  Google Scholar 

  15. Dulanská S, Zvachová S, Silliková V, Mátel Ľ, Šauša O, Maťko I (2018) Modified biosorbent wood-decay fungus fomes fomentarius for pre-concentration of 137Cs in water samples. J Radioanal Nucl Chem 318(3):2493–2500. https://doi.org/10.1007/s10967-018-6332-0

    Article  CAS  Google Scholar 

  16. Kiener J, Limousy L, Jeguirim M, Le Meins JM, Hajjar-Garreau S, Bigoin G, Ghimbeu CM (2019) Activated carbon/transition metal (Ni, In, Cu) hexacyanoferrate nanocomposites for cesium adsorption. Materials 12:1253–1270. https://doi.org/10.3390/ma12081253

    Article  CAS  PubMed Central  Google Scholar 

  17. Kim Y, Kim KY, Kim S, Harbottle D, Lee JW (2017) Nanostructured potassium copper hexacyanoferrate-cellulose hydrogel for selective and rapid cesium adsorption. Chem Eng J 313:1042–1050. https://doi.org/10.1016/j.cej.2016.10.136

    Article  CAS  Google Scholar 

  18. Loss-Neskovic C, Ayrault S, Badillo V, Jimenez B, Garnier E, Fedoroff M, Jones DJ, Merinov B (2004) Structure of copper-potassium hexacyanoferrate (II) and sorption mechanisms of cesium. J Solid State Chem 177:1817–1828. https://doi.org/10.1016/j.jssc.2004.01.018

    Article  CAS  Google Scholar 

  19. ORIGIN Pro 9: Data Analysis and Graphing Software, OriginLab, Nothampton, 2012;

  20. Pilson MEQ (2013) An introduction to the chemistry of the sea. Cambridge University Press, Cambridge

    Google Scholar 

  21. Vincent T, Vincent Ch, Guibal E (2015) Immobilization of metal hexacyanoferrate ion-exchangers for the synthesis of metal ion sorbents—a mini-review. Molecules 20:20582–20613. https://doi.org/10.3390/molecules201119718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ayrault S, Jimenez B, Garnier E, Fedoroff M, Jones DJ, Loos-Neskovic C (1998) Sorption mechanisms of cesium on CuII2 FeII(CN)6 and CuIII3 [FeIII(CN)6]2 hexacyanoferrates and their relation to the crystalline structure. J Solid State Chem 141:475–485. https://doi.org/10.1006/jssc.1998.7997

    Article  CAS  Google Scholar 

  23. Han F, Zhang GH, Gu P (2013) Adsorption and equilibrium modeling of cesium on copper ferrocyanide. J Radioanal Nucl Chem 295:369–377. https://doi.org/10.1007/s10967-012-1854-3

    Article  CAS  Google Scholar 

  24. Ho YS, Mckay G (1997) Pseudo-second order model for sorption processes. Proc Biochem 34:451–465. https://doi.org/10.1016/S0032-9592(98)00112-5

    Article  Google Scholar 

  25. Azizian S (2004) Kinetic models of sorption: a theoretical analysis. J Colloid Interfaces Sci 276:47–52. https://doi.org/10.1016/j.jcis.2004.03.04

    Article  CAS  Google Scholar 

  26. Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Petrov BN, Csáki F (eds) Proceedings of the second international symposium on information theory. Akademiai Kiado, Budapest, pp 267–281

    Google Scholar 

  27. Bozdogan H (1987) Model selection and Akaike’s information criterion (AIC): the general theory and its analytical extensions. Psychometrika 52:345–370. https://doi.org/10.1007/BF02294361

    Article  Google Scholar 

  28. Burnham KP, Anderson DR (2004) Multimodel inference: understanding AIC and BIC in model selection. Sociol Methods Res 33:261–304. https://doi.org/10.1177/0049124104268644

    Article  Google Scholar 

  29. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723. https://doi.org/10.1109/TAC.1974.1100705

    Article  Google Scholar 

  30. Jalali-Rad R, Ghafourian H, Asef Y, Dalir ST, Sahafipour MH, Gharanjik BM (2004) Biosorption of cesium by native and chemically modified biomass of marine algae: introduce the new biosorbents for biotechnology applications. J Hazard Mater B116:125–134. https://doi.org/10.1016/j.jhazmat.2004.08.022

    Article  CAS  Google Scholar 

  31. Chung HK, Kim WH, Park J, Cho J, Jeong TY (2015) Application of Langmuir and Freundlich isotherms to predict adsorbate removal efficiency or required amount of adsorbent. J Ind Eng Chem 28:241–246. https://doi.org/10.1016/j.jiec.2015.02.021

    Article  CAS  Google Scholar 

  32. Rajec P, Orechovska J, Novák I (2000) NIFSIL: new composite sorbent for cesium. J Radioanal Nucl Chem 245(2):317–321. https://doi.org/10.1023/A:1006758304650

    Article  CAS  Google Scholar 

  33. Milonjić S, Bispo I, Fedoroff M, Loos-Neskovic C, Vidal-Madjar C (2002) Sorption of cesium on copper hexacyanoferrate/polymer/silica composites in batch and dynamic conditions. J Radioanal Nucl Chem 252(3):497–501. https://doi.org/10.1023/A:1015846502676

    Article  Google Scholar 

  34. Mimura H, Masanori K, Kenichi A, Onodera Y (1999) Selective removal of cesium from radioactive waste solutions using insoluble ferrocyanide-loaded mordenites. In: WM’99 conference

  35. Arief VO, Trilestari K, Sunarso J, Indraswati N, Ismadji S (2008) Recent Progress on biosorption of heavy metals from liquids using low cost biosorbents: characterization, biosorption parameters and mechanism studies. Clean 36:937–962. https://doi.org/10.1002/clen.200800167

    Article  CAS  Google Scholar 

  36. Milyutin VV, Mikheev SV, Gelis VM, Kononenko OA (2009) Coprecipitation of microamounts of cesium with precipitates of transition metal ferrocyanides in alkaline solutions. Radiochemistry 51:295–297. https://doi.org/10.1134/S106636220903014X

    Article  CAS  Google Scholar 

  37. Milyutin VV, Mikheev SV, Gelis VM, Kozlitin EA (2009) Sorption of cesium on ferrocyanide sorbents from highly saline solutions. Radiochemistry 51:298–300. https://doi.org/10.1134/S1066362209030151

    Article  CAS  Google Scholar 

  38. Sharygin L, Muromskiy A, Kalyagina M, Borovkov S (2007) A granular inorganic cation-exchanger selective to cesium. J Nucl Sci Technol 44:767–773. https://doi.org/10.3327/jnst.44.767

    Article  CAS  Google Scholar 

  39. Bellomo A (1970) Formation of copper(II), Zinc(II), silver(I) and lead(II) ferrocyanides. Talanta 17:1109–1114. https://doi.org/10.1016/0039-9140(70)80103-5

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the grant of Comenius University No. UK-36-2019 and the project of the Slovak Research and Development Agency under the Contract No. APVV-17-0150. This research is a part of a dissertation theses at the Comenius University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veronika Silliková.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silliková, V., Dulanská, S., Horník, M. et al. Impregnated fly ash sorbent for cesium-137 removal from water samples. J Radioanal Nucl Chem 324, 1225–1236 (2020). https://doi.org/10.1007/s10967-020-07132-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07132-6

Keywords

Navigation