Skip to main content
Log in

Natural radionuclide levels and the associated radiological risks in soils from the three mesoregions of Pernambuco state, Brazil

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A large-scale survey of natural radionuclides in the soils is presented. 105 topsoil samples were collected and analysed by gamma spectrometry. The data indicated that climatic conditions might impact the content of natural radionuclides. Low-humidity conditions and igneous bedrock were associated with the highest median value of 40K in the Agreste region (667 Bq kg−1). The humid climate of Zona da Mata was associated with the lowest median value of 40K (39 Bq kg−1) and the highest levels of radium. Soils from most parts of the state may be used as building materials without presenting a radiological risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. UNSCEAR (2008) United Nations Scientific Committee on the Effects of Atomic Radiation. Sources and effects of ionizing radiation. Report to the General Assembly, Annexe B. United Nations Publication, United Nations, New York

  2. UNSCEAR (2000) United Nations Scientific Committee on the Effects of Atomic Radiation. Sources, effects and risks of ionizing radiations. United Nations Publication, United Nations, New York

  3. IAEA (1988) International Atomic Energy Agency. The Radiological Accident in Goiania. ISBN:92-0-129088-8

  4. Christensen DM, Iddins CJ, Parrilo SJ et al (2014) Management of ionizing radiation injuries and illnesses, part 4: acute radiation syndrome. J Am Osteopath Assoc 114:702–711. https://doi.org/10.7556/jaoa.2014.138

    Article  PubMed  Google Scholar 

  5. USEPA (1999) Estimating Radiogenic Cancer Risks. United States Environmental Protection Agency. EPA Report 402-R-00-003, Washington, D.C.

  6. UNSCEAR (1993) United Nations Scientific Committee on the Effects of Atomic Radiation. Sources and effects of ionizing radiation. Report to ionizing radiation: sources and biological effects. Report to The General Assembly, With Scientific Annexes. United Nations Publication, United Nations, New York

  7. ICRP (1991) International Commission on Radiological Protection. Recommendations of the International Commission on Radiological Protection. ICRP Publication 60; Oxford: 1990 Pergamon Press

  8. Faheem M, Mujahid S (2008) Assessment of radiological hazards due to the natural radioactivity in soil and building material samples collected from six districts of the Punjab province-Pakistan. Radiat Meas 43(8):1443–1447

    Article  CAS  Google Scholar 

  9. Hannan M, Wahid K, Nguyen N (2015) Assessment of natural and artificial radionuclides in Mission (Texas) surface soils. J Radioanal Nucl Chem 305:573–582. https://doi.org/10.1007/s10967-015-4018-4

    Article  CAS  Google Scholar 

  10. Saleh IH (2013) Radioactivity of 238U, 232Th, 40K, and 137Cs and assessment of depleted uranium in soil of the Musandam Peninsula, Sultanate of Oman. Turk J Eng Environ Sci 36:236–248. https://doi.org/10.3906/muh-1110-1

    Article  CAS  Google Scholar 

  11. Cinelli G, Tollesfen T, Bossew P et al (2019) Digital version of the European Atlas of natural radiation. J Environ Radioact 196:240–252. https://doi.org/10.1016/j.jenvrad.2018.02.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ramsiya M, Joseph A, Eappen KP et al (2019) Activity concentrations of radionuclides in soil samples along the coastal areas of Kerala, India and the assessment of radiation hazard indices. J Radioanal Nucl Chem 320:291–298. https://doi.org/10.1007/s10967-019-06481-1

    Article  CAS  Google Scholar 

  13. Manić Vesna, Manić Goran, Radojković Branko et al (2019) Radioactivity of soil in the region of the town of Nis, Serbia. J Radiat Prot Dosim 185(4):456–463. https://doi.org/10.1093/rpd/ncz034

    Article  Google Scholar 

  14. Ulbirich HHGJ, Ulbrich MNC, Ferreira FJF, Alves LS et al (2009) Levantamentos gamaespectrométricos em granitos diferenciados. In: Revisão da metodologia e do comportamento geoquímico dos elementos K, Th e U Geol USP Ser Cient 9(1):33–53. https://doi.org/10.5327/Z1519-874X2009000100003

  15. Magalhães CAP (1977) Projeto Venturosa: estudos geológicos e radiométricos na folha venturosa - área I, sub-área F. Thesis (Graduate), Universidade Federal de Pernambuco, Recife, Brazil

  16. Amaral RS, Mazzilli BP (1997) Avaliação do equilíbrio entre 238U e 226Ra e a relação 226Ra/228Ra no mapeamento (solo) das jazidas fosfáticas em Pernambuco. Anais International Nuclear Atlantic Conference. https://www.ipen.br/biblioteca/cd/inac/1997/ENAN/E03_015.PDF. Acessed 27 Ago 2018

  17. Amaral RS, Vasconcelos WE, Borges E, Silveira SV, Mazzilli BP (2005) Intake of Uranium and Radium—226 due to food crops consumption in the phosphate region of Pernambuco—Brazil. J Environ Radioact 82:383–398

    Article  CAS  Google Scholar 

  18. Santos Júnior, JA (2009) Avaliação Radiométrica do 238U, 226Ra, 232Th e 40K em uma Área Anômala do Agreste de Pernambuco 139 f. Thesis (Doctor degree) Universidade Federal de Pernambuco, 2009

  19. Santos Júnior JA, Amaral RS, Silva CM, Menezes RSC, Bezerra JD (2009) Radium-228 as an indicator of Thorium-232 presence in a soil in Pernambuco, Brazil. Bull Environ Contam Toxicol 82(6):650–652

    Article  Google Scholar 

  20. Santos Júnior JA, Amaral RS, Silva CM, Menezes RSC (2010) Radium equivalent and annual effective dose from geological samples from Pedra—Pernambuco, Brazil. Radiat Meas 5(45):861–864

    Article  Google Scholar 

  21. Júnior Santos, Amaral RS, Santos JMN, Silva ANC, Rojas LAV, Milan MO et al (2018) Radioactive disequilibrium and dynamic of natural radionuclides in soils in the state of Pernambuco—Brazil. Radiat Prot Dosimetry 182(4):448–458. https://doi.org/10.1093/rpd/ncy101

    Article  CAS  Google Scholar 

  22. EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária (2000) Levantamento de reconhecimento de baixa e média intensidade dos solos do estado de Pernambuco. Rio de Janeiro: Embrapa Solos, 2000

  23. IBGE – Instituto Brasileiro de Geografia Estatística. http://www.ibge.gov.br/cidadesat/xtras/uf.php?coduf=26. Accessed 17 Sept 2018

  24. EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária (2002) O Recurso Natural Solo. In: Manzatto CV et al (eds) Uso agrícola dos solos brasileiros. Rio de Janeiro: EMBRAPA SOLOS, pp 1–12

  25. Possas JMC, Moura G, Correa MM, Lopes PMO (2012) Agroclimatic zoning for physic mut crop in the State of Pernambuco. R Bras Eng Agríc Ambiental 16(9):993–998. https://doi.org/10.1590/S1415-43662012000900010

    Article  Google Scholar 

  26. Brito LT, Moura MSB, Gama GFB (2007) Potencialidades da água de chuva no semi-árido brasileiro. Petrolina: Embrapa Semi-Árido

  27. De Paula AMM, Azevedo M, Lopes PMO, Moura GBA (2014) Zoneamento bioclimático para a raça ovina Dorper no Estado de Pernambuco. Pesq Agropec Bras 49(12):986–993. https://doi.org/10.1590/S0100-204X2014001200009

    Article  Google Scholar 

  28. Oliveira RG, Medeiros WE (2012) Evidences of buried loads in the base the crust of Borborema Plateau (NE Brazil) from Bouguer admittance estimates. J S Am Earth Sci 37:60–76. https://doi.org/10.1016/j.sames.2012.02.004

    Article  Google Scholar 

  29. EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária, 2006. Centro Nacional de Pesquisa de Solos. Sistema brasileiro de classificação de solos. 2.ed. Rio de Janeiro: Embrapa Solos, 2006. 306p

  30. EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária (1997) Manual de métodos de análise de solo. 2nd edn. Rio de Janeiro

  31. Carnet A, Jacquenin R (1990) Methods for measuring radium isotopes: Gamma spectrometry In: Environmental behaviour of radium, Technical Report Series No. 310. IAEA, Vienna, pp 189–204

  32. Ribeiro FCA, Lauria DC, Silva JIR, Lima ESA, Sobrinho NMBA, Pèrez DV (2018) Baseline and quality reference values for natural radionuclides in Soils of Rio de Janeiro State, Brazil. Rev Bras Cienc Solo 42:1–15. https://doi.org/10.1590/18069657rbcs20170146

    Article  Google Scholar 

  33. Ribeiro FCA, Lauria DC, Silva JIR, Lima ESA, Sobrinho NMB, Perez DV (2016) Concentration of fallout Cesium-137 in soil of the Rio de Janeiro State, Brazil. Braz J Rad Sci 4:1–20. https://doi.org/10.15392/bjrs.v4i2.236

    Article  CAS  Google Scholar 

  34. IAEA (1989) International Atomic Energy Agency, 1989. Measurement of radionuclides in food and the environment. Technical Report Series 295, A Guidebook. IAEA

  35. IAEA (2012) International Atomic Energy Agency, 2012. Worldwide proficiency test: determination of natural and artificial radionuclides in moss-soil and water IAEA-CU-2009-03. Vienna: IAEA; 2012. Analytical quality in nuclear applications series No. 22

  36. Tauhata LM, Vianna M, Oliveira A, Ferreira MJ, Bragança A, Clain R, Faria Q (2006) The Brazilian National Intercomparison Program (PNI/IRD/CNEN): evaluation of 15 years of data. J Environ Radioact 86:384–390. https://doi.org/10.1016/j.jenvrad.2005.10.002

    Article  CAS  PubMed  Google Scholar 

  37. ISO/IEC 17025:2017. General requirements for the competence of testing and calibration laboratories. International Organization for Standardization. Geneva, Switzerland

  38. Ribeiro FCA, Lauria DC, do Rio MAP, Cunha GG, Sousa WO, Lima EAM, Franzen M (2017) Natural radioactivity in soils of the state of Rio de Janeiro (Brazil): radiological characterization and relationships to geological formation, soil types and soil properties. J Environ Radioact 182:34–43

    Article  Google Scholar 

  39. Isaaks EH, Srivastava RM (1989) An introduction to applied geostatistics. Oxford University Press, New York

    Google Scholar 

  40. Mello CR, Lima JM, Silva AM, Mello JM, Oliveira MS (2003) Krigagem e inverso do quadrado da distância para interpolação dos parâmetros da equação de chuvas intensas. Rev Bras Cienc Solo 27:925–933. https://doi.org/10.1590/S0100-06832003000500017

    Article  Google Scholar 

  41. Singh A, Singh A (2013) Statistical software for environmental applications for data sets with and without non detect observations. ProUCL. U.S. Environmental Protection Agency. EPA/600/R-07/041

  42. EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária (2011) O novo mapa de solos do Brasil: legenda atualizada. EMBRAPA Solos, Rio de Janeiro, RJ, Brazil

  43. CPRM - Companhia de Pesquisa de Recursos Minerais (2006) Mapa geodiversidade do Brasil: influência da geologia dos grandes geossistemas no uso e ocupação dos terrenos. CPRM, Brasília, DF

  44. NEA-OECD - Nuclear Energy Agency-Organization for Economic Cooperation and Development (1979) Exposure to radiation from the natural radioactivity in building materials. Report by a Group of Experts of the OECD Nuclear Energy Agency. OECD

  45. UNSCEAR (2008) s Scientific Committee on the Effects of Atomic Radiation, 2008. Report to General Assembly, Annex B: Report to General Assembly with Scientific Annexes. Sources and Effects of Ionizing Radiation. United Nations, Sales Publications No. E.10.Xi.3 Volume I. United Nations, New York

  46. ICRP - International Commission on Radiological Protection (1993) Age-dependent doses to members of the public from intake of radionuclides—part 2 ingestion dose coefficients. ICRP Publication 67. Ann. ICRP 23 (3–4)

  47. Beretka J, Mathew PJ (1985) Natural radioactivity of Australian building materials, industrial wastes and by-products. Health Phys 48:87–95

    Article  CAS  Google Scholar 

  48. UNSCEAR - United Nations Scientific Committee on the Effects of Atomic Radiation (1982) Ionizing Radiation: Sources and Biological Effects. Report to the General Assembly, With Scientific Annexes. United Nations, New York

  49. Ozturk BC, Çam NF, Yaprak G (2013) Reference levels of natural radioactivity and 137Cs in and around the surface soils of Kestanbol pluton in Ezine region of Çanakkale province, Turkey. J Environ Sci Health 48:1522–1532. https://doi.org/10.1080/10934529.2013.797242

    Article  CAS  Google Scholar 

  50. Kalev SD, Gurpal ST (2018) The composition of soils and sediments. In: Green chemistry: an inclusive approach, pp 339–357. https://doi.org/10.1016/C2015-0-05674-X

  51. Leal ALC, Lauria DC, Ribeiro FCA, Vigilio EP, Franzen M, Lima EAM (2020) Spatial distributions of natural radionuclides in soils of the state of Pernambuco, Brazil: influence of bedrocks, soils types and climates. J Environ Radioact 211:1–8. https://doi.org/10.1016/j.envrad.2019.106046

    Article  Google Scholar 

  52. Pereira A, Pereira D, Neves L, Peinado M, Armenteros I (2013) Radiological data on building stones from a Spanish region: castilla y Léon. Nat Hazards Earth Syst Sci 13:3493–3501. https://doi.org/10.5194/nhess-13-3493-2013

    Article  Google Scholar 

  53. Leal ALC, Lauria DC (2016) Assessement of doses to members of the public arising from the use of ornamental rocks in residences. J Radiol Prot 36:680–694. https://doi.org/10.1088/0952-4746/36/3/680

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Serviço Geológico do Brasil (CPRM) for the collection of samples and for providing the sample information. In addition, the authors thank the CPRM for their innovative and efficient work. This research project would not be possible without the maps and information provided and published by the CPRM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André L. C. Leal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest

Informed consent

Informed consent was obtained from all individual participants included in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leal, A.L.C., Lauria, D.C. & Ribeiro, F.C.A. Natural radionuclide levels and the associated radiological risks in soils from the three mesoregions of Pernambuco state, Brazil. J Radioanal Nucl Chem 324, 521–531 (2020). https://doi.org/10.1007/s10967-020-07124-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07124-6

Keywords

Navigation