Skip to main content
Log in

Molar absorptivities of U(VI), U(IV), and Pu(III) in nitric acid solutions of various concentrations relevant to developing nuclear fuel recycling flowsheets

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A number of inconsistencies in the literature was revealed while developing on-line spectrophotometric monitoring tools for determining aqueous phase actinide concentrations in a tributyl phosphate based solvent extraction flowsheet. This prompted a re-evaluation of the molar absorptivities of U(VI), U(IV) and Pu(III) ions in nitric acid (0.5–4 M). In this paper, our measured molar absorptivity values are reported and compared to the available technical literature data. Results of spectrophotometric analysis of grab samples from a counter-current solvent extraction flowsheet test show satisfactory agreement with total uranium and plutonium concentrations determined in the same samples by ICP-MS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Herbst RS, Baron P, Nilsson M (2011) Standard and advanced separation: PUREX processes for nuclear fuel reprocessing. In: Nash KL, Lumetta GJ (eds) Advanced separation techniques for nuclear fuel reprocessing and radioactive waste treatment. Woodhead Publishing, Oxford, pp 141–175

    Chapter  Google Scholar 

  2. Drain F, Emin JL, Vinoche R, Baron P (2008) COEX™ process: cross-breeding between innovation and industrial experience. In: WM2008, Phoenix, Arizona, Paper 8220

  3. Bryan SA, Levitskaia TG, Johnsen AM, Orton CR, Peterson JM (2011) Spectroscopic monitoring of spent nuclear fuel reprocessing streams: an evaluation of spent fuel solutions via Raman, visible, and near-infrared spectroscopy. Radiochim Acta 99:563–571

    Article  CAS  Google Scholar 

  4. Bryan SA, Levitskaia TG, Casella AJ, Peterson JM, Johnsen AM, Lines AM, Thomas EM, Orton CR (2011) Spectroscopic on-line monitoring for process control and safeguarding of radiochemical streams. In: Nash KL, Lumetta GJ (eds) Advanced separation techniques for nuclear fuel reprocessing and radioactive waste treatment. Woodhead Publishing Ltd, Oxford, pp 95–119

    Chapter  Google Scholar 

  5. Lines AM, Adami SR, Sinkov SI, Lumetta GJ, Bryan SA (2017) Multivariate analysis for quantification of plutonium(IV) in nitric acid based on absorption spectra. Anal Chem 89:9354–9359

    Article  CAS  Google Scholar 

  6. Lumetta GJ, Allred JR, Bryan SA, Hall GB, Levitskaia TG, Lines AM, Sinkov SI (2019) Simulant testing of a co-decontamination (CoDCon) flowsheet for a product with a controlled uranium-to-plutonium ratio. Sep Sci Technol 54:1977–1984

    Article  CAS  Google Scholar 

  7. Lumetta GJ, Allred JR, Asmussen SE, Bryan SA, Hall GB, Heller FD, Lines AM, Sinkov SI (2019) Progress in real-time monitoring for controlling the composition of the uranium-plutonium nitrate product in a tri-butyl phosphate based flowsheet. In: GLOBAL 2019, American Nuclear Society: Seattle, Washington, pp. 993–998

  8. Lumetta GJ, Allred JR, Asmussen SE, Bryan SA, Carter JC, Hall GB, Heller FD, Lines AM, Sinkov SI (2019) CoDCon Project: FY 2019 Status report; PNNL-28983; Pacific Northwest National Laboratory, Richland, Washington

  9. Lee MH, Park YJ, Kim WH (2007) Absorption spectroscopic properties for Pu(III, IV and VI) in nitric and hydrochloric acid media. J Radioanal Nucl Chem Art 273:375–382

    Article  CAS  Google Scholar 

  10. Myers MN (1956) Absorption spectra of plutonium and impurity ions in nitric acid solutions; HW-44744; General Electric Hanford Atomic Products Operation, Richland

  11. Lines AM, Hall GB, Sinkov SI, Levitskaia TG, Gallagher N, Lumetta GL, Bryan SA (2019) Overcoming oxidation state dependent spectral interferences: on-line monitoring of U(VI) reduction to U(IV) via Raman and UV-vis spectroscopy. Submitted to Industrial & Engineering Chemistry Research

  12. Chernyaev II (1964) Complex compounds of uranium, translated from “Kompleksnye Soedineniya Urana”. Nauka, Moscow

    Google Scholar 

  13. Adair HL, Kobisk EH (1975) Preparation and characterization of neutron dosimeter materials. Nucl Technol 25:224–236

    Article  CAS  Google Scholar 

  14. Katz JJ, Seaborg GT (1957) The chemistry of the actinide elements. Methuen and Company, London

    Google Scholar 

  15. Schmieder H, Kuhn E, Ochsenfeld W (1970) Die Absorptionsspektren von Pu (III), Pu (IV), Pu (VI), U (IV) und U (VI) in Salpetersäure und Tri-n-butylphosphat-n-Alkan-Lösungen und ihre Anwendung in der automatischen Prozeßkontrolle; KFK 1306; Institut für Heiße Chemie, Gesellschaft für Kernforschung M. B. H., Karlsruhe: Karlsruhe, Germany

  16. Schmieder H, Kuhn E (1972) Automatische Kontrolle und Steuerung von Aufarbeitungs-prozessen für Kernbrennstoffe durch Spektralphotometrie und Leitfähigkeitsmessung. Chem Ing Tech 44:104–111

    Article  CAS  Google Scholar 

  17. Billo EJ (1997) Excel® for chemists: a comprehensive guide. Wiley-VCH, New York

    Google Scholar 

  18. Smith NA, Krebs JF, Hebden (2015) UV-Vis Spectroscopy as a tool for safeguards; instrumentation installation and data collection, ANL/NE-15/7

  19. Coletti LM, Copping R, Garduno K, Lujan EJW, Mauser AK, Mechler-Hickson A, May I, Reilly SD, Rios D, Rowley J, Schroeder AB (2017) The application of visible absorption spectroscopy to the analysis of uranium in aqueous solutions. Talanta 175:390–405

    Article  Google Scholar 

  20. Rabinowich E, Belford RL (1964) Spectroscopy and photochemistry of uranyl compounds. Pergamon Press, New York

    Google Scholar 

  21. Pashalidis I, Runde W, Kim JL (1993) A Study of Solid-Liquid Phase Equilibria of Pu(VI) and U(VI) in Aqueous Carbonate Systems. Radiochim Acta 61:141–146

    CAS  Google Scholar 

  22. Meinrath G (1997) Speziation des urans unter hydrogeologischen aspekten. Technische Universitat Bergakademie Freiberg, Issue, p 4

    Google Scholar 

  23. Canner AJ, Harwood LM, Cowell J, Babra JS, Brown SF, Ogden MD (2020) Spectrophotometric analysis of ternary uranyl systems to replace tri-N-butyl phosphate (TBP) in used fuel reprocessing. J Solution Chem 49:52–67

    Article  CAS  Google Scholar 

  24. Ikeda-Ohno A, Hennig C, Tsushima S, Scheinost AC, Bernhard G, Yaita T (2009) Speciation and structural study of U(IV) and -(VI) in perchloric and nitric acid solutions. Inorg Chem 48:7201–7210

    Article  CAS  Google Scholar 

  25. Ermolaev NP, Krot NN (1962) Some data on the behavior of uranium(IV) in nitric acid solutions. Sov Radiochem 4(6):600–606

    Google Scholar 

  26. McKay HAC, Woodhead JL (1964) A spectrophotometric study of the nitrate complexes of uranium(IV). J Chem Soc, pp 717–723

  27. Hagan PG, Miner FJ (1969) Spectrophotometric determination of plutonium III, IV, and VI in nitric acid solutions; RFP-1391; The Dow Chemical Company Rocky Flats Division: Golden, Colorado

Download references

Acknowledgements

This work is funded by the U.S. Department of Energy’s Office of Nuclear Energy, through the Nuclear Technologies Research and Development Program, Pacific Northwest National Laboratory is operated by Battelle Memorial Institute for the U.S. Department of Energy under contract DE-AC05-76RL01830.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey I. Sinkov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinkov, S.I., Hall, G.B. & Lumetta, G.J. Molar absorptivities of U(VI), U(IV), and Pu(III) in nitric acid solutions of various concentrations relevant to developing nuclear fuel recycling flowsheets. J Radioanal Nucl Chem 324, 773–789 (2020). https://doi.org/10.1007/s10967-020-07106-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07106-8

Keywords

Navigation