Skip to main content
Log in

Removal of high concentrations of NO3 from nuclear industrial wastewater by using a fixed-bed bioreactor

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this work, a down-flow fixed bed anaerobic biofilm reactor filled by biological ceramsites were prepared to remove the high concentration of NO3 (> 20 g/L) from nuclear industry wastewaters. The effects of hydraulic retention time, the concentration of NO3, the molar ratio of C/N and temperature on the removal efficiencies of NO3 were investigated. The results showed that the removal rate of NO3 with the initial concentration of 6 g/L can reach 99% or more by controlling the hydraulic retention time at 0.75 h, the molar ratio of C/N at 1.5 and the temperature over 18 °C. In the process, the NO2 was not accumulated, and the autotrophic denitrifying bacteria grow well in anaerobic biofilm reactors, proving a usable method for removing the high concentration NO3 from nuclear industrial wastewaters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Bernet N, Habouzit F, Moletta R (1996) Use of an industrial effluent as a carbon source for denitrification of a high-strength wastewater. J Appl Microbiol Biotechnol 46(1):92–97

    Article  CAS  Google Scholar 

  2. Glass C, Silverstein JA (1999) Denitrification of high-nitrate, high-salinity wastewater. J Water Res 33(1):223–229

    Article  CAS  Google Scholar 

  3. Dhamole PB, Nair RR, D'Souza SF, Lele SS (2007) Denitrification of high strength nitrate waste. J Bioresour Technol 98(2):247–252

    Article  CAS  Google Scholar 

  4. Krishna MTV, Nancharaiah YV, Venugopalan VP, Satyam SPM (2016) Effect of C/N ratio on denitrification of high-strength nitrate wastewater in anoxic granular sludge sequencing batch reactors. J Ecol Eng 91:441–448

    Article  Google Scholar 

  5. Organization WH (2011) Guidelines for drinking-water quality, 4th edn.

  6. Sadeq M, Moe CL, Attarassi B, Cherkaoui I, Elaouad R, Idrissi L (2008) Drinking water nitrate and prevalence of methemoglobinemia among infants and children aged 1–7 years in Moroccan areas. J Int J Hyg Environ Health 211(5–6):546–554

    Article  CAS  Google Scholar 

  7. Maanen JMSV, Dijk AV, Mulder K, Baets MHD, Menheere PCA, Heide DVD, Mertens PLJM, Kleinjans JCS (1994) Consumption of drinking water with high nitrate levels causes hypertrophy of the thyroid. J Toxicol Lett 72(1–3):365

    Article  Google Scholar 

  8. Eskiocak S, Dundar C, Basoglu T, Altaner S (2005) The effects of taking chronic nitrate by drinking water on thyroid functions and morphology. J Clin Exp Med 5(2):66–71

    Article  CAS  Google Scholar 

  9. Richard YR (2010) Operating experiences of full-scale biological and ion‐exchange denitrification plants in France. J Water Environ J 3(2):154–167

    Article  Google Scholar 

  10. Schoeman JJ, Steyn A (2003) Nitrate removal with reverse osmosis in a rural area in South Africa. J Desalination 155(1):15–26

    Article  CAS  Google Scholar 

  11. Elmidaoui E, Sahli MMA, Chay L, Elabbassi H (2001) Pollution of nitrate in Moroccan ground water: removal by electrodialysis. J Desalination 136(1):325–332

    Article  CAS  Google Scholar 

  12. Lecloux AJ (1999) Chemical, biological and physical constrains in catalytic reduction processes for purification of drinking water. J Catal Today 53(1):23–34

    Article  CAS  Google Scholar 

  13. Fanning JC (2000) The chemical reduction of nitrate in aqueous solution. J Coord Chem Rev 199(1):159–179

    Article  CAS  Google Scholar 

  14. Kapoor A, Viraraghavan T (1998) Nitrate removal from drinking water: review. J J Environ Eng 124(9):903–903

    Article  Google Scholar 

  15. Sahinkaya E, Dursun N (2012) Sulfur-oxidizing autotrophic and mixotrophic denitrification processes for drinking water treatment: elimination of excess sulfate production and alkalinity requirement. J Chemosphere 89(2):144–149

    Article  CAS  Google Scholar 

  16. Foglar L, Briški F (2003) Wastewater denitrification process: the influence of methanol and kinetic analysis. J Process Biochem 39(1):95–103

    Article  CAS  Google Scholar 

  17. Ding A, Zheng P, Zhang M, Zhang Q (2017) Impacts of electron donor and acceptor on the performance of electrotrophic denitrification. J Environ Sci Pollut Res Int 24(24):19693–19702

    Article  CAS  Google Scholar 

  18. Broman E, Jawad A, Wu X, Christel S, Ni G, Lopez-Fernandez M, Sundkvist JE, Dopson M (2017) Low temperature, autotrophic microbial denitrification using thiosulfate or thiocyanate as electron donor. J Biodegrad 28(4):287–301

    Article  CAS  Google Scholar 

  19. Zhu C, Wang H, Yan Q, He R, Zhang G (2017) Enhanced denitrification at biocathode facilitated with biohydrogen production in a three-chambered bioelectrochemical system (BES) reactor. J Chem Eng J 312:360–366

    Article  CAS  Google Scholar 

  20. Singh P, Singh MK, Beg YR, Nishad GR (2019) A review on spectroscopic methods for determination of nitrite and nitrate in environmental samples. J Talanta 191:364–381

    Article  CAS  Google Scholar 

  21. Wang QH, Yu LJ, Liu Y, Lin L, Lu RG, Zhu JP, He L, Lu ZL (2017) Methods for the detection and determination of nitrite and nitrate: a review. J Talanta 165:709–720

    Article  CAS  Google Scholar 

  22. Li X, Yuan Y, Yuan Y, Bi Z, Liu X, Huang Y, Liu H, Chen C, Xu S (2018) Effects of salinity on the denitrification efficiency and community structure of a combined partial nitritation-anaerobic ammonium oxidation process. J Bioresour Technol 249:550–556

    Article  CAS  Google Scholar 

  23. Zhai S, Ji M, Zhao Y, Pavlostathis SG, Zhao Q (2018) Effects of salinity and COD/N on denitrification and bacterial community in dicyclic-type electrode based biofilm reactor. J Chemosphere 192:328–336

    Article  CAS  Google Scholar 

  24. Nordstrom A, Herbert RB (2017) Denitrification in a low-temperature bioreactor system at two different hydraulic residence times: laboratory column studies. J Environ Technol 38(11):1362–1375

    Article  Google Scholar 

  25. Nguyen TNP, Chao SJ, Chen PC, Huang C (2018) Effects of C/N ratio on nitrate removal and floc morphology of autohydrogenotrophic bacteria in a nitrate-containing wastewater treatment process. J J Environ Sci (China) 69:52–60

    Article  Google Scholar 

  26. Chen H, Jogler M, Rohde M, Klenk HP, Busse HJ, Tindall BJ, Sproer C, Overmann J (2012) Reclassification and emended description of Caulobacter leidyi as Sphingomonas leidyi comb. nov., and emendation of the genus Sphingomonas. J Int J Syst Evol Microbiol 62(Pt 12):2835–2843

    Article  CAS  Google Scholar 

  27. Hsu YH, Lai WA, Lin SY, Hameed A, Shahina M, Shen FT, Zhu ZL, Young LS, Young CC (2013) Chiayiivirga flava gen. nov., sp. nov., a novel bacterium of the family Xanthomonadaceae isolated from an agricultural soil, and emended description of the genus Dokdonella. J Int J Syst Evol Microbiol 63(Pt 9):3293–3300

    Article  CAS  Google Scholar 

  28. Hwang CY, Cho BC (2008) Ponticoccus litoralis gen. nov., sp. nov., a marine bacterium in the family Rhodobacteraceae. J Int J Syst Evol Microbiol 58(Pt 6):1332–1338

    Article  CAS  Google Scholar 

  29. Chen WM, Xie PB, Hsu MY, Sheu SY (2018) Parvibium lacunae gen. nov., sp. nov., a new member of the family Alcaligenaceae isolated from a freshwater pond. J Int J Syst Evol Microbiol 68(4):1291–1299

    Article  CAS  Google Scholar 

  30. Song J, Choo YJ, Cho JC (2008) Perlucidibaca piscinae gen. nov., sp. nov., a freshwater bacterium belonging to the family Moraxellaceae. J Int J Syst Evol Microbiol 58(Pt 1):97–102

    Article  CAS  Google Scholar 

  31. Zhang WY, Fang MX, Zhang WW, Xiao C, Zhang XQ, Yu ZP, Zhu XF, Wu M (2013) Extensimonas vulgaris gen. nov., sp. nov., a member of the family Comamonadaceae. J Int J Syst Evol Microbiol 63(Pt 6):2062–2068

    Article  CAS  Google Scholar 

  32. Drobish AM, Emery BD, Whitney AM, Lauer AC, Metcalfe MG, McQuiston JR (2016) Oblitimonas alkaliphila gen. nov., sp. nov., in the family Pseudomonadaceae, recovered from a historical collection of previously unidentified clinical strains. J Int J Syst Evol Microbiol 66(8):3063–3070

    Article  CAS  Google Scholar 

  33. Mu Y, Zhou L, Zeng XC, Liu L, Pan Y, Chen X, Wang J, Li S, Li WJ, Wang Y (2016) Arsenicitalea aurantiaca gen. nov., sp. nov., a new member of the family Hyphomicrobiaceae, isolated from high-arsenic sediment. J Int J Syst Evol Microbiol 66(12):5478–5484

    Article  CAS  Google Scholar 

  34. Straub KL, Schönhuber WA, Buchholz-Cleven BEE, Schink B (2004) Diversity of ferrous iron-oxidizing, nitrate-reducing bacteria and their involvement in oxygen-independent iron cycling. J Geom J 21(6):371–378

    CAS  Google Scholar 

  35. Kiskira K, Papirio S, van Hullebusch ED, Esposito G (2017) Fe(II)-mediated autotrophic denitrification: a new bioprocess for iron bioprecipitation/biorecovery and simultaneous treatment of nitrate-containing wastewaters. J Int Biodeterior Biodegrad 119:631–648

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the nuclear energy development project of the State Administration of Science. Technology and Industry for National Defense. PRC and CNNC Jianzhong Nuclear fuel Co., Ltd. (190GHN001), the Opening Project of Cooperative Innovation Center for Nuclear Fuel Cycle Technology and Equipment, University of South China (2019KFQ06) and Scientific Research Project of Education Department of Hunan (18C0448).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingliang Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, H., Lei, Z., Hu, E. et al. Removal of high concentrations of NO3 from nuclear industrial wastewater by using a fixed-bed bioreactor. J Radioanal Nucl Chem 324, 803–811 (2020). https://doi.org/10.1007/s10967-020-07104-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07104-w

Keywords

Navigation